Update app.py
Browse files
app.py
CHANGED
@@ -1,878 +1,67 @@
|
|
1 |
-
|
|
|
2 |
from fastapi.middleware.cors import CORSMiddleware
|
3 |
-
from fastapi.responses import JSONResponse
|
4 |
from fastapi.staticfiles import StaticFiles
|
5 |
-
|
6 |
-
import secrets
|
7 |
-
from typing import Optional
|
8 |
-
from sentence_transformers import SentenceTransformer
|
9 |
-
from bson.objectid import ObjectId
|
10 |
-
from datetime import datetime, timedelta
|
11 |
-
from fastapi import Request
|
12 |
-
import requests
|
13 |
-
import numpy as np
|
14 |
import argparse
|
15 |
-
import os
|
16 |
-
from pymongo import MongoClient
|
17 |
-
from datetime import datetime
|
18 |
-
from passlib.hash import bcrypt
|
19 |
-
import PyPDF2
|
20 |
-
from io import BytesIO
|
21 |
-
import uuid
|
22 |
|
23 |
-
from
|
24 |
-
|
25 |
-
import time
|
26 |
|
27 |
-
|
28 |
-
import json
|
29 |
-
import asyncio
|
30 |
|
31 |
-
|
32 |
-
from langchain_community.document_loaders import PyPDFDirectoryLoader
|
33 |
-
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
34 |
-
from langchain_community.embeddings import HuggingFaceEmbeddings
|
35 |
-
|
36 |
-
|
37 |
-
SECRET_KEY = secrets.token_hex(32)
|
38 |
-
|
39 |
-
HOST = os.environ.get("API_URL", "0.0.0.0")
|
40 |
-
PORT = os.environ.get("PORT", 7860)
|
41 |
-
parser = argparse.ArgumentParser()
|
42 |
-
parser.add_argument("--host", default=HOST)
|
43 |
-
parser.add_argument("--port", type=int, default=PORT)
|
44 |
-
parser.add_argument("--reload", action="store_true", default=True)
|
45 |
-
parser.add_argument("--ssl_certfile")
|
46 |
-
parser.add_argument("--ssl_keyfile")
|
47 |
-
args = parser.parse_args()
|
48 |
-
|
49 |
-
# Configuration MongoDB
|
50 |
-
mongo_uri = os.environ.get("MONGODB_URI", "mongodb+srv://giffardaxel95:[email protected]/")
|
51 |
-
db_name = os.environ.get("DB_NAME", "chatmed_schizo")
|
52 |
-
mongo_client = MongoClient(mongo_uri)
|
53 |
-
db = mongo_client[db_name]
|
54 |
-
|
55 |
-
SAVE_FOLDER = "files"
|
56 |
-
COLLECTION_NAME="connaissances"
|
57 |
-
os.makedirs(SAVE_FOLDER, exist_ok=True)
|
58 |
-
|
59 |
-
|
60 |
-
app = FastAPI()
|
61 |
app.add_middleware(
|
62 |
CORSMiddleware,
|
63 |
-
|
64 |
-
allow_origins=[
|
65 |
-
"https://axl95-medically.hf.space",
|
66 |
-
"https://huggingface.co",
|
67 |
-
"http://localhost:3000",
|
68 |
-
"http://localhost:7860",
|
69 |
-
"http://0.0.0.0:7860"
|
70 |
-
],
|
71 |
allow_credentials=True,
|
72 |
allow_methods=["*"],
|
73 |
allow_headers=["*"],
|
74 |
)
|
75 |
|
76 |
-
|
77 |
-
for attempt in range(retries):
|
78 |
-
try:
|
79 |
-
req = Request(url, headers={'User-Agent': 'Mozilla/5.0'})
|
80 |
-
with urlopen(req) as response, open(save_path, 'wb') as f:
|
81 |
-
f.write(response.read())
|
82 |
-
print(f"Téléchargé : {save_path}")
|
83 |
-
return
|
84 |
-
except (HTTPError, URLError) as e:
|
85 |
-
print(f"Erreur ({e}) pour {url}, tentative {attempt+1}/{retries}")
|
86 |
-
time.sleep(delay)
|
87 |
-
print(f"Échec du téléchargement : {url}")
|
88 |
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
file_path = os.path.join(SAVE_FOLDER, file_name)
|
94 |
-
if not os.path.exists(file_path):
|
95 |
-
download_pdf(url, file_path)
|
96 |
-
|
97 |
-
loader = PyPDFDirectoryLoader(SAVE_FOLDER)
|
98 |
-
docs = loader.load()
|
99 |
-
|
100 |
-
splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)
|
101 |
-
chunks = splitter.split_documents(docs)
|
102 |
-
print(f"{len(chunks)} morceaux extraits.")
|
103 |
-
|
104 |
-
embedding_model = HuggingFaceEmbeddings(model_name="shtilev/medical_embedded_v2")
|
105 |
-
|
106 |
-
client = MongoClient(MONGO_URI)
|
107 |
-
collection = client[DB_NAME][COLLECTION_NAME]
|
108 |
|
109 |
-
collection.delete_many({})
|
110 |
|
111 |
-
for chunk in chunks:
|
112 |
-
text = chunk.page_content
|
113 |
-
embedding = embedding_model.embed_query(text)
|
114 |
-
collection.insert_one({
|
115 |
-
"text": text,
|
116 |
-
"embedding": embedding
|
117 |
-
})
|
118 |
|
119 |
-
|
120 |
'''
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
def retrieve_relevant_context(query, embedding_model, mongo_collection, k=5):
|
126 |
-
query_embedding = embedding_model.embed_query(query)
|
127 |
-
|
128 |
-
docs = list(mongo_collection.find({}, {"text": 1, "embedding": 1}))
|
129 |
-
|
130 |
-
print(f"[DEBUG] Recherche de contexte pour: '{query}'")
|
131 |
-
print(f"[DEBUG] {len(docs)} documents trouvés dans la base de données")
|
132 |
-
|
133 |
-
if not docs:
|
134 |
-
print("[DEBUG] Aucun document dans la collection. RAG désactivé.")
|
135 |
-
return ""
|
136 |
-
|
137 |
-
# Calcul des similarités
|
138 |
-
similarities = []
|
139 |
-
for i, doc in enumerate(docs):
|
140 |
-
if "embedding" not in doc or not doc["embedding"]:
|
141 |
-
print(f"[DEBUG] Document {i} sans embedding")
|
142 |
-
continue
|
143 |
-
|
144 |
-
sim = cosine_similarity([query_embedding], [doc["embedding"]])[0][0]
|
145 |
-
similarities.append((sim, i, doc["text"]))
|
146 |
-
|
147 |
-
similarities.sort(reverse=True)
|
148 |
-
|
149 |
-
# Afficher les top k documents avec leurs scores
|
150 |
-
print("\n=== CONTEXTE SÉLECTIONNÉ ===")
|
151 |
-
top_k_docs = []
|
152 |
-
for i, (score, idx, text) in enumerate(similarities[:k]):
|
153 |
-
doc_preview = text[:100] + "..." if len(text) > 100 else text
|
154 |
-
print(f"Document #{i+1} (score: {score:.4f}): {doc_preview}")
|
155 |
-
top_k_docs.append(text)
|
156 |
-
print("==========================\n")
|
157 |
-
|
158 |
-
return "\n\n".join(top_k_docs)
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
async def get_admin_user(request: Request):
|
163 |
-
user = await get_current_user(request)
|
164 |
-
if user["role"] != "Administrateur":
|
165 |
-
raise HTTPException(status_code=403, detail="Accès interdit: Droits d'administrateur requis")
|
166 |
-
return user
|
167 |
-
|
168 |
-
|
169 |
-
try:
|
170 |
-
embedding_model = HuggingFaceEmbeddings(model_name="shtilev/medical_embedded_v2")
|
171 |
-
print("✅ Modèle d'embedding médical chargé avec succès")
|
172 |
-
|
173 |
-
except Exception as e:
|
174 |
-
print(f"Erreur lors du chargement du modèle d'embedding: {str(e)}")
|
175 |
-
embedding_model = None
|
176 |
-
|
177 |
-
doc_count = db.connaissances.count_documents({})
|
178 |
-
print(f"\n[DIAGNOSTIC] Collection 'connaissances': {doc_count} documents trouvés")
|
179 |
-
if doc_count == 0:
|
180 |
-
print("[AVERTISSEMENT] La collection est vide. Le système RAG ne fonctionnera pas!")
|
181 |
-
print("[AVERTISSEMENT] Veuillez charger des documents via l'API admin ou exécuter le script d'initialisation.")
|
182 |
-
else:
|
183 |
-
sample_doc = db.connaissances.find_one({})
|
184 |
-
has_embeddings = "embedding" in sample_doc and sample_doc["embedding"] is not None
|
185 |
-
print(f"[DIAGNOSTIC] Les documents ont des embeddings: {'✅ Oui' if has_embeddings else '❌ Non'}")
|
186 |
-
if not has_embeddings:
|
187 |
-
print("[AVERTISSEMENT] Les documents n'ont pas d'embeddings valides!")
|
188 |
-
@app.post("/api/admin/knowledge/upload")
|
189 |
-
async def upload_pdf(
|
190 |
-
file: UploadFile = File(...),
|
191 |
-
title: str = None,
|
192 |
-
tags: str = None,
|
193 |
-
current_user: dict = Depends(get_admin_user)
|
194 |
-
):
|
195 |
-
try:
|
196 |
-
if not file.filename.endswith('.pdf'):
|
197 |
-
raise HTTPException(status_code=400, detail="Le fichier doit être un PDF")
|
198 |
-
|
199 |
-
contents = await file.read()
|
200 |
-
pdf_file = BytesIO(contents)
|
201 |
-
|
202 |
-
pdf_reader = PyPDF2.PdfReader(pdf_file)
|
203 |
-
text_content = ""
|
204 |
-
for page_num in range(len(pdf_reader.pages)):
|
205 |
-
text_content += pdf_reader.pages[page_num].extract_text() + "\n"
|
206 |
-
|
207 |
-
embedding = None
|
208 |
-
if embedding_model:
|
209 |
-
try:
|
210 |
-
# Limiter la taille du texte si nécessaire
|
211 |
-
max_length = 5000
|
212 |
-
truncated_text = text_content[:max_length]
|
213 |
-
embedding = embedding_model.embed_query(truncated_text)
|
214 |
-
except Exception as e:
|
215 |
-
print(f"Erreur lors de la génération de l'embedding: {str(e)}")
|
216 |
-
|
217 |
-
doc_id = ObjectId()
|
218 |
-
|
219 |
-
pdf_path = f"files/{str(doc_id)}.pdf"
|
220 |
-
os.makedirs("files", exist_ok=True)
|
221 |
-
with open(pdf_path, "wb") as f:
|
222 |
-
pdf_file.seek(0)
|
223 |
-
f.write(contents)
|
224 |
-
|
225 |
-
document = {
|
226 |
-
"_id": doc_id,
|
227 |
-
"text": text_content,
|
228 |
-
"embedding": embedding,
|
229 |
-
"title": title or file.filename,
|
230 |
-
"tags": tags.split(",") if tags else [],
|
231 |
-
"uploaded_by": str(current_user["_id"]),
|
232 |
-
"upload_date": datetime.utcnow()
|
233 |
-
}
|
234 |
-
|
235 |
-
print(f"Tentative d'insertion du document avec ID: {doc_id}")
|
236 |
-
result = db.connaissances.insert_one(document)
|
237 |
-
print(f"Document inséré avec ID: {result.inserted_id}")
|
238 |
-
|
239 |
-
# Vérification de l'insertion
|
240 |
-
verification = db.connaissances.find_one({"_id": doc_id})
|
241 |
-
if verification:
|
242 |
-
print(f"Document vérifié et trouvé dans la base de données")
|
243 |
-
return {"success": True, "document_id": str(doc_id)}
|
244 |
-
else:
|
245 |
-
print(f"ERREUR: Document non trouvé après insertion")
|
246 |
-
return {"success": False, "error": "Document non trouvé après insertion"}
|
247 |
-
|
248 |
-
except Exception as e:
|
249 |
-
import traceback
|
250 |
-
print(f"Erreur lors de l'upload du PDF: {traceback.format_exc()}")
|
251 |
-
raise HTTPException(status_code=500, detail=f"Erreur: {str(e)}")
|
252 |
-
|
253 |
-
@app.get("/api/admin/knowledge")
|
254 |
-
async def list_documents(current_user: dict = Depends(get_admin_user)):
|
255 |
-
try:
|
256 |
-
documents = list(db.connaissances.find().sort("upload_date", -1))
|
257 |
-
|
258 |
-
result = []
|
259 |
-
for doc in documents:
|
260 |
-
doc_safe = {
|
261 |
-
"id": str(doc["_id"]),
|
262 |
-
"title": doc.get("title", "Sans titre"),
|
263 |
-
"tags": doc.get("tags", []),
|
264 |
-
"date": doc.get("upload_date").isoformat() if "upload_date" in doc else None,
|
265 |
-
"text_preview": doc.get("text", "")[:100] + "..." if len(doc.get("text", "")) > 100 else doc.get("text", "")
|
266 |
-
}
|
267 |
-
result.append(doc_safe)
|
268 |
-
|
269 |
-
return {"documents": result}
|
270 |
-
except Exception as e:
|
271 |
-
print(f"Erreur lors de la liste des documents: {str(e)}")
|
272 |
-
raise HTTPException(status_code=500, detail=f"Erreur: {str(e)}")
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
@app.delete("/api/admin/knowledge/{document_id}")
|
277 |
-
async def delete_document(document_id: str, current_user: dict = Depends(get_admin_user)):
|
278 |
-
try:
|
279 |
-
try:
|
280 |
-
doc_id = ObjectId(document_id)
|
281 |
-
except Exception:
|
282 |
-
raise HTTPException(status_code=400, detail="ID de document invalide")
|
283 |
-
|
284 |
-
# Vérifier si le document existe
|
285 |
-
document = db.connaissances.find_one({"_id": doc_id})
|
286 |
-
if not document:
|
287 |
-
raise HTTPException(status_code=404, detail="Document non trouvé")
|
288 |
-
|
289 |
-
# Supprimer le document de la base de données
|
290 |
-
result = db.connaissances.delete_one({"_id": doc_id})
|
291 |
-
|
292 |
-
if result.deleted_count == 0:
|
293 |
-
raise HTTPException(status_code=500, detail="Échec de la suppression du document")
|
294 |
-
|
295 |
-
# Supprimer le fichier PDF associé s'il existe
|
296 |
-
pdf_path = f"files/{document_id}.pdf"
|
297 |
-
if os.path.exists(pdf_path):
|
298 |
-
try:
|
299 |
-
os.remove(pdf_path)
|
300 |
-
print(f"Fichier supprimé: {pdf_path}")
|
301 |
-
except Exception as e:
|
302 |
-
print(f"Erreur lors de la suppression du fichier: {str(e)}")
|
303 |
-
|
304 |
-
return {"success": True, "message": "Document supprimé avec succès"}
|
305 |
-
|
306 |
-
except HTTPException as he:
|
307 |
-
raise he
|
308 |
-
except Exception as e:
|
309 |
-
raise HTTPException(status_code=500, detail=f"Erreur lors de la suppression: {str(e)}")
|
310 |
-
|
311 |
-
|
312 |
-
@app.post("/api/login")
|
313 |
-
async def login(request: Request, response: Response):
|
314 |
-
try:
|
315 |
-
data = await request.json()
|
316 |
-
email = data.get("email")
|
317 |
-
password = data.get("password")
|
318 |
-
|
319 |
-
user = db.users.find_one({"email": email})
|
320 |
-
if not user or not bcrypt.verify(password, user["password"]):
|
321 |
-
raise HTTPException(status_code=401, detail="Email ou mot de passe incorrect")
|
322 |
-
|
323 |
-
session_id = secrets.token_hex(16)
|
324 |
-
user_id = str(user["_id"])
|
325 |
-
username = f"{user['prenom']} {user['nom']}"
|
326 |
-
|
327 |
-
db.sessions.insert_one({
|
328 |
-
"session_id": session_id,
|
329 |
-
"user_id": user_id,
|
330 |
-
"created_at": datetime.utcnow(),
|
331 |
-
"expires_at": datetime.utcnow() + timedelta(days=7)
|
332 |
-
})
|
333 |
-
|
334 |
-
response.set_cookie(
|
335 |
-
key="session_id",
|
336 |
-
value=session_id,
|
337 |
-
httponly=False,
|
338 |
-
max_age=7*24*60*60,
|
339 |
-
samesite="none",
|
340 |
-
secure=True,
|
341 |
-
path="/"
|
342 |
-
)
|
343 |
-
|
344 |
-
# Log pour débogage
|
345 |
-
print(f"Session créée: {session_id} pour l'utilisateur {user_id}")
|
346 |
-
|
347 |
-
return {
|
348 |
-
"success": True,
|
349 |
-
"username": username,
|
350 |
-
"user_id": user_id,
|
351 |
-
"session_id": session_id,
|
352 |
-
"role": user.get("role", "user")
|
353 |
-
|
354 |
-
}
|
355 |
-
|
356 |
-
except Exception as e:
|
357 |
-
print(f"Erreur login: {str(e)}")
|
358 |
-
raise HTTPException(status_code=500, detail=str(e))
|
359 |
-
|
360 |
-
|
361 |
-
async def get_current_user(request: Request):
|
362 |
-
session_id = request.cookies.get("session_id")
|
363 |
-
print(f"Cookie de session reçu: {session_id[:5] if session_id else 'None'}")
|
364 |
-
|
365 |
-
if not session_id:
|
366 |
-
auth_header = request.headers.get("Authorization")
|
367 |
-
if auth_header and auth_header.startswith("Bearer "):
|
368 |
-
session_id = auth_header.replace("Bearer ", "")
|
369 |
-
print(f"Session d'autorisation reçue: {session_id[:5]}...")
|
370 |
-
|
371 |
-
if not session_id:
|
372 |
-
session_id = request.query_params.get("session_id")
|
373 |
-
if session_id:
|
374 |
-
print(f"Session des paramètres de requête: {session_id[:5]}...")
|
375 |
-
|
376 |
-
if not session_id:
|
377 |
-
raise HTTPException(status_code=401, detail="Non authentifié - Aucune session trouvée")
|
378 |
-
|
379 |
-
session = db.sessions.find_one({
|
380 |
-
"session_id": session_id,
|
381 |
-
"expires_at": {"$gt": datetime.utcnow()}
|
382 |
-
})
|
383 |
-
|
384 |
-
if not session:
|
385 |
-
raise HTTPException(status_code=401, detail="Session expirée ou invalide")
|
386 |
-
|
387 |
-
user = db.users.find_one({"_id": ObjectId(session["user_id"])})
|
388 |
-
if not user:
|
389 |
-
raise HTTPException(status_code=401, detail="Utilisateur non trouvé")
|
390 |
-
|
391 |
-
return user
|
392 |
-
|
393 |
-
@app.post("/api/logout")
|
394 |
-
async def logout(request: Request, response: Response):
|
395 |
-
session_id = request.cookies.get("session_id")
|
396 |
-
if session_id:
|
397 |
-
db.sessions.delete_one({"session_id": session_id})
|
398 |
-
|
399 |
-
response.delete_cookie(key="session_id")
|
400 |
-
return {"success": True}
|
401 |
-
@app.post("/api/register")
|
402 |
-
async def register(request: Request):
|
403 |
-
try:
|
404 |
-
data = await request.json()
|
405 |
-
|
406 |
-
required_fields = ["prenom", "nom", "email", "password"]
|
407 |
-
for field in required_fields:
|
408 |
-
if not data.get(field):
|
409 |
-
raise HTTPException(status_code=400, detail=f"Le champ {field} est requis")
|
410 |
-
|
411 |
-
existing_user = db.users.find_one({"email": data["email"]})
|
412 |
-
if existing_user:
|
413 |
-
raise HTTPException(status_code=409, detail="Cet email est déjà utilisé")
|
414 |
-
|
415 |
-
hashed_password = bcrypt.hash(data["password"])
|
416 |
-
|
417 |
-
user = {
|
418 |
-
"prenom": data["prenom"],
|
419 |
-
"nom": data["nom"],
|
420 |
-
"email": data["email"],
|
421 |
-
"password": hashed_password,
|
422 |
-
"createdAt": datetime.utcnow(),
|
423 |
-
"role": data.get("role", "user"),
|
424 |
-
|
425 |
-
}
|
426 |
-
|
427 |
-
result = db.users.insert_one(user)
|
428 |
-
|
429 |
-
return {"message": "Utilisateur créé avec succès", "userId": str(result.inserted_id)}
|
430 |
-
|
431 |
-
except HTTPException as he:
|
432 |
-
raise he
|
433 |
-
|
434 |
-
except Exception as e:
|
435 |
-
import traceback
|
436 |
-
print(f"Erreur lors de l'inscription: {str(e)}")
|
437 |
-
print(traceback.format_exc())
|
438 |
-
raise HTTPException(status_code=500, detail=f"Erreur serveur: {str(e)}")
|
439 |
-
@app.post("/api/embed")
|
440 |
-
async def embed(request: Request):
|
441 |
-
data = await request.json()
|
442 |
-
texts = data.get("texts", [])
|
443 |
-
|
444 |
-
try:
|
445 |
-
|
446 |
-
dummy_embedding = [[0.1, 0.2, 0.3] for _ in range(len(texts))]
|
447 |
-
|
448 |
-
return {"embeddings": dummy_embedding}
|
449 |
-
except Exception as e:
|
450 |
-
return {"error": str(e)}
|
451 |
-
|
452 |
-
@app.get("/invert")
|
453 |
-
async def invert(text: str):
|
454 |
return {
|
455 |
-
"
|
456 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
457 |
}
|
458 |
-
|
459 |
-
HF_TOKEN = os.getenv('REACT_APP_HF_TOKEN')
|
460 |
-
if not HF_TOKEN:
|
461 |
-
raise RuntimeError("Le token Hugging Face (HF_TOKEN) n'est pas défini dans les variables d'environnement.")
|
462 |
-
conversation_history = {}
|
463 |
-
hf_client = InferenceClient(token=HF_TOKEN)
|
464 |
-
@app.post("/api/chat")
|
465 |
-
async def chat(request: Request):
|
466 |
-
global conversation_history
|
467 |
-
|
468 |
-
# ① Lecture du JSON et extraction des champs
|
469 |
-
data = await request.json()
|
470 |
-
user_message = data.get("message", "").strip()
|
471 |
-
conversation_id = data.get("conversation_id")
|
472 |
-
|
473 |
-
if not user_message:
|
474 |
-
raise HTTPException(status_code=400, detail="Le champ 'message' est requis.")
|
475 |
-
|
476 |
-
current_user = None
|
477 |
-
try:
|
478 |
-
current_user = await get_current_user(request)
|
479 |
-
except HTTPException:
|
480 |
-
pass
|
481 |
-
|
482 |
-
current_tokens = 0
|
483 |
-
message_tokens = 0
|
484 |
-
if current_user and conversation_id:
|
485 |
-
conv = db.conversations.find_one({
|
486 |
-
"_id": ObjectId(conversation_id),
|
487 |
-
"user_id": str(current_user["_id"])
|
488 |
-
})
|
489 |
-
if conv:
|
490 |
-
current_tokens = conv.get("token_count", 0)
|
491 |
-
message_tokens = int(len(user_message.split()) * 1.3)
|
492 |
-
MAX_TOKENS = 2000
|
493 |
-
if current_tokens + message_tokens > MAX_TOKENS:
|
494 |
-
return JSONResponse({
|
495 |
-
"error": "token_limit_exceeded",
|
496 |
-
"message": "Cette conversation a atteint sa limite de taille. Veuillez en créer une nouvelle.",
|
497 |
-
"tokens_used": current_tokens,
|
498 |
-
"tokens_limit": MAX_TOKENS
|
499 |
-
}, status_code=403)
|
500 |
-
|
501 |
-
if conversation_id and current_user:
|
502 |
-
db.messages.insert_one({
|
503 |
-
"conversation_id": conversation_id,
|
504 |
-
"user_id": str(current_user["_id"]),
|
505 |
-
"sender": "user",
|
506 |
-
"text": user_message,
|
507 |
-
"timestamp": datetime.utcnow()
|
508 |
-
})
|
509 |
-
|
510 |
-
is_history_question = any(
|
511 |
-
phrase in user_message.lower()
|
512 |
-
for phrase in [
|
513 |
-
"ma première question", "ma précédente question", "ma dernière question",
|
514 |
-
"ce que j'ai demandé", "j'ai dit quoi", "quelles questions",
|
515 |
-
"c'était quoi ma", "quelle était ma", "mes questions"
|
516 |
-
]
|
517 |
-
)
|
518 |
-
|
519 |
-
if conversation_id not in conversation_history:
|
520 |
-
conversation_history[conversation_id] = []
|
521 |
-
# If there's existing conversation in DB, load it to memory
|
522 |
-
if current_user and conversation_id:
|
523 |
-
previous_messages = list(db.messages.find(
|
524 |
-
{"conversation_id": conversation_id}
|
525 |
-
).sort("timestamp", 1))
|
526 |
-
|
527 |
-
for msg in previous_messages:
|
528 |
-
if msg["sender"] == "user":
|
529 |
-
conversation_history[conversation_id].append(f"Question : {msg['text']}")
|
530 |
-
else:
|
531 |
-
conversation_history[conversation_id].append(f"Réponse : {msg['text']}")
|
532 |
-
|
533 |
-
if is_history_question:
|
534 |
-
actual_questions = []
|
535 |
-
|
536 |
-
if conversation_id in conversation_history:
|
537 |
-
for msg in conversation_history[conversation_id]:
|
538 |
-
if msg.startswith("Question : "):
|
539 |
-
q_text = msg.replace("Question : ", "")
|
540 |
-
# Ignorer les méta-questions qui parlent déjà de l'historique
|
541 |
-
is_meta = any(phrase in q_text.lower() for phrase in [
|
542 |
-
"ma première question", "ma précédente question", "ma dernière question",
|
543 |
-
"ce que j'ai demandé", "j'ai dit quoi", "quelles questions",
|
544 |
-
"c'était quoi ma", "quelle était ma", "mes questions"
|
545 |
-
])
|
546 |
-
if not is_meta:
|
547 |
-
actual_questions.append(q_text)
|
548 |
-
|
549 |
-
if not actual_questions:
|
550 |
-
return JSONResponse({
|
551 |
-
"response": "Vous n'avez pas encore posé de question dans cette conversation. C'est notre premier échange."
|
552 |
-
})
|
553 |
-
|
554 |
-
question_number = None
|
555 |
-
|
556 |
-
if any(p in user_message.lower() for p in ["première question", "1ère question", "1ere question"]):
|
557 |
-
question_number = 1
|
558 |
-
elif any(p in user_message.lower() for p in ["deuxième question", "2ème question", "2eme question", "seconde question"]):
|
559 |
-
question_number = 2
|
560 |
-
else:
|
561 |
-
import re
|
562 |
-
match = re.search(r'(\d+)[eèiéê]*m*e* question', user_message.lower())
|
563 |
-
if match:
|
564 |
-
try:
|
565 |
-
question_number = int(match.group(1))
|
566 |
-
except:
|
567 |
-
pass
|
568 |
-
|
569 |
-
if question_number is not None:
|
570 |
-
if 0 < question_number <= len(actual_questions):
|
571 |
-
suffix = "ère" if question_number == 1 else "ème"
|
572 |
-
return JSONResponse({
|
573 |
-
"response": f"Votre {question_number}{suffix} question était : \"{actual_questions[question_number-1]}\""
|
574 |
-
})
|
575 |
-
else:
|
576 |
-
return JSONResponse({
|
577 |
-
"response": f"Vous n'avez pas encore posé {question_number} questions dans cette conversation."
|
578 |
-
})
|
579 |
-
|
580 |
-
else:
|
581 |
-
if len(actual_questions) == 1:
|
582 |
-
return JSONResponse({
|
583 |
-
"response": f"Vous avez posé une seule question jusqu'à présent : \"{actual_questions[0]}\""
|
584 |
-
})
|
585 |
-
else:
|
586 |
-
question_list = "\n".join([f"{i+1}. {q}" for i, q in enumerate(actual_questions)])
|
587 |
-
return JSONResponse({
|
588 |
-
"response": f"Voici les questions que vous avez posées dans cette conversation :\n\n{question_list}"
|
589 |
-
})
|
590 |
-
|
591 |
-
context = None
|
592 |
-
if not is_history_question and embedding_model:
|
593 |
-
context = retrieve_relevant_context(user_message, embedding_model, db.connaissances, k=5)
|
594 |
-
if context and conversation_id:
|
595 |
-
conversation_history[conversation_id].append(f"Contexte : {context}")
|
596 |
-
|
597 |
-
if conversation_id:
|
598 |
-
conversation_history[conversation_id].append(f"Question : {user_message}")
|
599 |
-
|
600 |
-
system_prompt = (
|
601 |
-
"Tu es un chatbot spécialisé dans la santé mentale, et plus particulièrement la schizophrénie. "
|
602 |
-
"Tu réponds de façon fiable, claire et empathique, en t'appuyant uniquement sur des sources médicales et en français. "
|
603 |
-
)
|
604 |
-
|
605 |
-
enriched_context = ""
|
606 |
-
|
607 |
-
if conversation_id in conversation_history:
|
608 |
-
actual_questions = []
|
609 |
-
for msg in conversation_history[conversation_id]:
|
610 |
-
if msg.startswith("Question : "):
|
611 |
-
q_text = msg.replace("Question : ", "")
|
612 |
-
# Ignorer les méta-questions
|
613 |
-
is_meta = any(phrase in q_text.lower() for phrase in [
|
614 |
-
"ma première question", "ma précédente question", "ma dernière question",
|
615 |
-
"ce que j'ai demandé", "j'ai dit quoi", "quelles questions",
|
616 |
-
"c'était quoi ma", "quelle était ma", "mes questions"
|
617 |
-
])
|
618 |
-
if not is_meta and q_text != user_message:
|
619 |
-
actual_questions.append(q_text)
|
620 |
-
|
621 |
-
if actual_questions:
|
622 |
-
recent_questions = actual_questions[-5:] # 3 dernières questions
|
623 |
-
enriched_context += "Historique récent des questions:\n"
|
624 |
-
for i, q in enumerate(recent_questions):
|
625 |
-
enriched_context += f"- Question précédente {len(recent_questions)-i}: {q}\n"
|
626 |
-
enriched_context += "\n"
|
627 |
-
|
628 |
-
if context:
|
629 |
-
enriched_context += "Contexte médical pertinent:\n"
|
630 |
-
enriched_context += context
|
631 |
-
enriched_context += "\n\n"
|
632 |
-
|
633 |
-
if enriched_context:
|
634 |
-
system_prompt += (
|
635 |
-
f"\n\n{enriched_context}\n\n"
|
636 |
-
"Utilise ces informations pour répondre de manière plus précise et contextuelle. "
|
637 |
-
"Ne pas inventer d'informations. Si tu ne sais pas, redirige vers un professionnel de santé."
|
638 |
-
)
|
639 |
-
else:
|
640 |
-
system_prompt += (
|
641 |
-
"Tu dois répondre uniquement à partir de connaissances médicales factuelles. "
|
642 |
-
"Si tu ne sais pas répondre, indique-le clairement et suggère de consulter un professionnel de santé."
|
643 |
-
)
|
644 |
-
|
645 |
-
messages = [{"role": "system", "content": system_prompt}]
|
646 |
-
|
647 |
-
if conversation_id and len(conversation_history.get(conversation_id, [])) > 0:
|
648 |
-
history = conversation_history[conversation_id]
|
649 |
-
for i in range(0, min(20, len(history)-1), 2):
|
650 |
-
if i+1 < len(history):
|
651 |
-
if history[i].startswith("Question :"):
|
652 |
-
user_text = history[i].replace("Question : ", "")
|
653 |
-
messages.append({"role": "user", "content": user_text})
|
654 |
-
|
655 |
-
if history[i+1].startswith("Réponse :"):
|
656 |
-
assistant_text = history[i+1].replace("Réponse : ", "")
|
657 |
-
messages.append({"role": "assistant", "content": assistant_text})
|
658 |
-
|
659 |
-
messages.append({"role": "user", "content": user_message})
|
660 |
-
|
661 |
-
try:
|
662 |
-
completion = hf_client.chat.completions.create(
|
663 |
-
model="mistralai/Mistral-7B-Instruct-v0.3",
|
664 |
-
messages=messages,
|
665 |
-
max_tokens=400,
|
666 |
-
temperature=0.7,
|
667 |
-
timeout=15,
|
668 |
-
)
|
669 |
-
bot_response = completion.choices[0].message["content"].strip()
|
670 |
-
except Exception:
|
671 |
-
fallback = hf_client.text_generation(
|
672 |
-
model="mistralai/Mistral-7B-Instruct-v0.3",
|
673 |
-
prompt=f"<s>[INST] {system_prompt}\n\nQuestion: {user_message} [/INST]",
|
674 |
-
max_new_tokens=512,
|
675 |
-
temperature=0.7
|
676 |
-
)
|
677 |
-
bot_response = fallback
|
678 |
-
|
679 |
-
if conversation_id:
|
680 |
-
conversation_history[conversation_id].append(f"Réponse : {bot_response}")
|
681 |
-
|
682 |
-
if len(conversation_history[conversation_id]) > 50: # 25 exchanges
|
683 |
-
conversation_history[conversation_id] = conversation_history[conversation_id][-50:]
|
684 |
-
|
685 |
-
if conversation_id and current_user:
|
686 |
-
db.messages.insert_one({
|
687 |
-
"conversation_id": conversation_id,
|
688 |
-
"user_id": str(current_user["_id"]),
|
689 |
-
"sender": "assistant",
|
690 |
-
"text": bot_response,
|
691 |
-
"timestamp": datetime.utcnow()
|
692 |
-
})
|
693 |
-
response_tokens = int(len(bot_response.split()) * 1.3)
|
694 |
-
total_tokens = current_tokens + message_tokens + response_tokens
|
695 |
-
db.conversations.update_one(
|
696 |
-
{"_id": ObjectId(conversation_id)},
|
697 |
-
{"$set": {
|
698 |
-
"last_message": bot_response,
|
699 |
-
"updated_at": datetime.utcnow(),
|
700 |
-
"token_count": total_tokens
|
701 |
-
}}
|
702 |
-
)
|
703 |
-
|
704 |
-
return {"response": bot_response}
|
705 |
-
|
706 |
-
|
707 |
-
def simulate_token_count(text):
|
708 |
-
"""
|
709 |
-
Simule le comptage de tokens sans appeler d'API externe.
|
710 |
-
"""
|
711 |
-
if not text:
|
712 |
-
return 0
|
713 |
-
|
714 |
-
text = text.replace('\n', ' \n ')
|
715 |
-
|
716 |
-
spaces_and_punct = sum(1 for c in text if c.isspace() or c in ',.;:!?()[]{}"\'`-_=+<>/@#$%^&*|\\')
|
717 |
-
|
718 |
-
digits = sum(1 for c in text if c.isdigit())
|
719 |
-
|
720 |
-
words = text.split()
|
721 |
-
short_words = sum(1 for w in words if len(w) <= 2)
|
722 |
-
|
723 |
-
# Les URLs et codes consomment plus de tokens
|
724 |
-
code_blocks = len(re.findall(r'```[\s\S]*?```', text))
|
725 |
-
urls = len(re.findall(r'https?://\S+', text))
|
726 |
-
|
727 |
-
adjusted_length = len(text) - spaces_and_punct - digits - short_words
|
728 |
-
|
729 |
-
token_count = (
|
730 |
-
adjusted_length / 4 +
|
731 |
-
spaces_and_punct * 0.25 +
|
732 |
-
digits * 0.5 +
|
733 |
-
short_words * 0.5 +
|
734 |
-
code_blocks * 5 +
|
735 |
-
urls * 4
|
736 |
-
)
|
737 |
-
|
738 |
-
return int(token_count * 1.1) + 1
|
739 |
-
@app.get("/data")
|
740 |
-
async def get_data():
|
741 |
-
data = {"data": np.random.rand(100).tolist()}
|
742 |
-
return JSONResponse(data)
|
743 |
-
|
744 |
-
@app.get("/api/conversations")
|
745 |
-
async def get_conversations(current_user: dict = Depends(get_current_user)):
|
746 |
-
try:
|
747 |
-
user_id = str(current_user["_id"])
|
748 |
-
conversations = list(db.conversations.find(
|
749 |
-
{"user_id": user_id},
|
750 |
-
{"_id": 1, "title": 1, "date": 1, "time": 1, "last_message": 1, "created_at": 1}
|
751 |
-
).sort("created_at", -1))
|
752 |
-
|
753 |
-
for conv in conversations:
|
754 |
-
conv["_id"] = str(conv["_id"])
|
755 |
-
|
756 |
-
return {"conversations": conversations}
|
757 |
-
except Exception as e:
|
758 |
-
raise HTTPException(status_code=500, detail=f"Erreur serveur: {str(e)}")
|
759 |
-
|
760 |
-
@app.post("/api/conversations")
|
761 |
-
async def create_conversation(request: Request, current_user: dict = Depends(get_current_user)):
|
762 |
-
try:
|
763 |
-
data = await request.json()
|
764 |
-
user_id = str(current_user["_id"])
|
765 |
-
|
766 |
-
conversation = {
|
767 |
-
"user_id": user_id,
|
768 |
-
"title": data.get("title", "Nouvelle conversation"),
|
769 |
-
"date": data.get("date"),
|
770 |
-
"time": data.get("time"),
|
771 |
-
"last_message": data.get("message", ""),
|
772 |
-
"created_at": datetime.utcnow()
|
773 |
-
}
|
774 |
-
|
775 |
-
result = db.conversations.insert_one(conversation)
|
776 |
-
|
777 |
-
return {"conversation_id": str(result.inserted_id)}
|
778 |
-
except Exception as e:
|
779 |
-
raise HTTPException(status_code=500, detail=f"Erreur serveur: {str(e)}")
|
780 |
-
|
781 |
-
@app.post("/api/conversations/{conversation_id}/messages")
|
782 |
-
async def add_message(conversation_id: str, request: Request, current_user: dict = Depends(get_current_user)):
|
783 |
-
try:
|
784 |
-
data = await request.json()
|
785 |
-
user_id = str(current_user["_id"])
|
786 |
-
|
787 |
-
print(f"Ajout message: conversation_id={conversation_id}, sender={data.get('sender')}, text={data.get('text')[:20]}...")
|
788 |
-
|
789 |
-
conversation = db.conversations.find_one({
|
790 |
-
"_id": ObjectId(conversation_id),
|
791 |
-
"user_id": user_id
|
792 |
-
})
|
793 |
-
|
794 |
-
if not conversation:
|
795 |
-
raise HTTPException(status_code=404, detail="Conversation non trouvée")
|
796 |
-
|
797 |
-
message = {
|
798 |
-
"conversation_id": conversation_id,
|
799 |
-
"user_id": user_id,
|
800 |
-
"sender": data.get("sender", "user"),
|
801 |
-
"text": data.get("text", ""),
|
802 |
-
"timestamp": datetime.utcnow()
|
803 |
-
}
|
804 |
-
|
805 |
-
db.messages.insert_one(message)
|
806 |
-
|
807 |
-
db.conversations.update_one(
|
808 |
-
{"_id": ObjectId(conversation_id)},
|
809 |
-
{"$set": {"last_message": data.get("text", ""), "updated_at": datetime.utcnow()}}
|
810 |
-
)
|
811 |
-
|
812 |
-
return {"success": True}
|
813 |
-
except Exception as e:
|
814 |
-
print(f"Erreur lors de l'ajout d'un message: {str(e)}")
|
815 |
-
raise HTTPException(status_code=500, detail=f"Erreur serveur: {str(e)}")
|
816 |
-
|
817 |
-
@app.get("/api/conversations/{conversation_id}/messages")
|
818 |
-
async def get_messages(conversation_id: str, current_user: dict = Depends(get_current_user)):
|
819 |
-
try:
|
820 |
-
user_id = str(current_user["_id"])
|
821 |
-
|
822 |
-
conversation = db.conversations.find_one({
|
823 |
-
"_id": ObjectId(conversation_id),
|
824 |
-
"user_id": user_id
|
825 |
-
})
|
826 |
-
|
827 |
-
if not conversation:
|
828 |
-
raise HTTPException(status_code=404, detail="Conversation non trouvée")
|
829 |
-
|
830 |
-
messages = list(db.messages.find(
|
831 |
-
{"conversation_id": conversation_id}
|
832 |
-
).sort("timestamp", 1))
|
833 |
-
|
834 |
-
for msg in messages:
|
835 |
-
msg["_id"] = str(msg["_id"])
|
836 |
-
if "timestamp" in msg:
|
837 |
-
msg["timestamp"] = msg["timestamp"].isoformat()
|
838 |
-
|
839 |
-
return {"messages": messages}
|
840 |
-
except Exception as e:
|
841 |
-
raise HTTPException(status_code=500, detail=f"Erreur serveur: {str(e)}")
|
842 |
-
|
843 |
-
@app.delete("/api/conversations/{conversation_id}")
|
844 |
-
async def delete_conversation(conversation_id: str, current_user: dict = Depends(get_current_user)):
|
845 |
-
try:
|
846 |
-
user_id = str(current_user["_id"])
|
847 |
-
|
848 |
-
result = db.conversations.delete_one({
|
849 |
-
"_id": ObjectId(conversation_id),
|
850 |
-
"user_id": user_id
|
851 |
-
})
|
852 |
-
|
853 |
-
if result.deleted_count == 0:
|
854 |
-
raise HTTPException(status_code=404, detail="Conversation non trouvée")
|
855 |
-
|
856 |
-
db.messages.delete_many({"conversation_id": conversation_id})
|
857 |
-
|
858 |
-
return {"success": True}
|
859 |
-
except Exception as e:
|
860 |
-
raise HTTPException(status_code=500, detail=f"Erreur serveur: {str(e)}")
|
861 |
-
|
862 |
-
|
863 |
-
app.mount("/", StaticFiles(directory="static", html=True), name="static")
|
864 |
-
|
865 |
if __name__ == "__main__":
|
866 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
867 |
|
868 |
-
print(args)
|
869 |
uvicorn.run(
|
870 |
"app:app",
|
871 |
host=args.host,
|
872 |
port=args.port,
|
873 |
reload=args.reload,
|
874 |
-
|
875 |
ssl_certfile=args.ssl_certfile,
|
876 |
ssl_keyfile=args.ssl_keyfile,
|
877 |
-
)
|
878 |
-
|
|
|
1 |
+
import config
|
2 |
+
from fastapi import FastAPI
|
3 |
from fastapi.middleware.cors import CORSMiddleware
|
|
|
4 |
from fastapi.staticfiles import StaticFiles
|
5 |
+
import uvicorn
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
import argparse
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
+
from database import init_mongodb
|
9 |
+
import auth, chat, conversations, admin
|
|
|
10 |
|
11 |
+
app = FastAPI(title="Medic.ial", description="Assistant IA spécialisé sur la maladie de la schizophrénie")
|
|
|
|
|
12 |
|
13 |
+
# Configuration CORS
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
app.add_middleware(
|
15 |
CORSMiddleware,
|
16 |
+
allow_origins=config.CORS_ORIGINS,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
allow_credentials=True,
|
18 |
allow_methods=["*"],
|
19 |
allow_headers=["*"],
|
20 |
)
|
21 |
|
22 |
+
init_mongodb()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
+
app.include_router(auth.router)
|
25 |
+
app.include_router(chat.router)
|
26 |
+
app.include_router(conversations.router)
|
27 |
+
app.include_router(admin.router)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
|
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
+
app.mount("/", StaticFiles(directory="static", html=True), name="static")
|
32 |
'''
|
33 |
+
@app.get("/")
|
34 |
+
async def root():
|
35 |
+
"""Page d'accueil de l'API Medic.ial."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
return {
|
37 |
+
"app_name": "Medic.ial - Assistant IA sur la schizophrénie",
|
38 |
+
"version": "1.0.0",
|
39 |
+
"api_endpoints": [
|
40 |
+
{"path": "/api/login", "method": "POST", "description": "Connexion utilisateur"},
|
41 |
+
{"path": "/api/register", "method": "POST", "description": "Création d'un compte"},
|
42 |
+
{"path": "/api/chat", "method": "POST", "description": "Poser une question à l'assistant"},
|
43 |
+
{"path": "/api/conversations", "method": "GET", "description": "Liste des conversations"},
|
44 |
+
{"path": "/api/conversations/{id}/messages", "method": "GET", "description": "Messages d'une conversation"}
|
45 |
+
],
|
46 |
+
"documentation": "/docs",
|
47 |
+
"status": "En ligne",
|
48 |
+
"environment": "Développement"
|
49 |
}
|
50 |
+
'''
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
if __name__ == "__main__":
|
52 |
+
parser = argparse.ArgumentParser()
|
53 |
+
parser.add_argument("--host", default=config.HOST)
|
54 |
+
parser.add_argument("--port", type=int, default=config.PORT)
|
55 |
+
parser.add_argument("--reload", action="store_true", default=True)
|
56 |
+
parser.add_argument("--ssl_certfile")
|
57 |
+
parser.add_argument("--ssl_keyfile")
|
58 |
+
args = parser.parse_args()
|
59 |
|
|
|
60 |
uvicorn.run(
|
61 |
"app:app",
|
62 |
host=args.host,
|
63 |
port=args.port,
|
64 |
reload=args.reload,
|
|
|
65 |
ssl_certfile=args.ssl_certfile,
|
66 |
ssl_keyfile=args.ssl_keyfile,
|
67 |
+
)
|
|