Spaces:
Running
on
Zero
Running
on
Zero
XXXXRT666
commited on
Commit
·
5cfeca6
1
Parent(s):
7bdf3c3
Cache CUDA Graph
Browse files- AR/models/structs.py +4 -6
- AR/models/t2s_model_abc.py +33 -13
- AR/models/t2s_model_flash_attn.py +62 -38
- README.md +1 -1
- inference_webui.py +6 -3
AR/models/structs.py
CHANGED
@@ -1,3 +1,7 @@
|
|
|
|
|
|
|
|
|
|
1 |
from __future__ import annotations
|
2 |
|
3 |
from dataclasses import dataclass
|
@@ -48,7 +52,6 @@ class T2SSession:
|
|
48 |
self.y_len = y_len
|
49 |
|
50 |
# Cache
|
51 |
-
self.kv_cache = decoder.init_cache(bsz)
|
52 |
self.sampler = Sampler(bsz, decoder.vocab_size)
|
53 |
|
54 |
# Forward args
|
@@ -62,11 +65,6 @@ class T2SSession:
|
|
62 |
self.input_pos = torch.zeros_like(self.prefill_len)
|
63 |
self.input_pos.add_(self.prefill_len)
|
64 |
|
65 |
-
# CUDA Graph
|
66 |
-
self.graph: Optional[torch.cuda.CUDAGraph] = None
|
67 |
-
self.xy_pos_ = torch.rand((bsz, 1, decoder.embedding_dim)).to(dtype)
|
68 |
-
self.xy_dec_ = torch.rand((bsz, 1, decoder.embedding_dim)).to(dtype)
|
69 |
-
|
70 |
# EOS
|
71 |
self.completed = torch.Tensor([False] * len(self.x)).bool().to(device)
|
72 |
self.y_results: List[Tensor] = [None] * len(self.x) # type: ignore
|
|
|
1 |
+
"""
|
2 |
+
Modified From https://github.com/XXXXRT666/GPT-SoVITS
|
3 |
+
"""
|
4 |
+
|
5 |
from __future__ import annotations
|
6 |
|
7 |
from dataclasses import dataclass
|
|
|
52 |
self.y_len = y_len
|
53 |
|
54 |
# Cache
|
|
|
55 |
self.sampler = Sampler(bsz, decoder.vocab_size)
|
56 |
|
57 |
# Forward args
|
|
|
65 |
self.input_pos = torch.zeros_like(self.prefill_len)
|
66 |
self.input_pos.add_(self.prefill_len)
|
67 |
|
|
|
|
|
|
|
|
|
|
|
68 |
# EOS
|
69 |
self.completed = torch.Tensor([False] * len(self.x)).bool().to(device)
|
70 |
self.y_results: List[Tensor] = [None] * len(self.x) # type: ignore
|
AR/models/t2s_model_abc.py
CHANGED
@@ -1,9 +1,14 @@
|
|
|
|
|
|
|
|
|
|
1 |
from __future__ import annotations
|
2 |
|
3 |
import os
|
4 |
from abc import ABC, abstractmethod
|
5 |
from contextlib import nullcontext
|
6 |
from typing import Any, Dict, List, MutableSequence, Optional, Tuple, Type
|
|
|
7 |
|
8 |
import torch
|
9 |
import torch._inductor.config
|
@@ -31,6 +36,7 @@ class Sampler(nn.Module):
|
|
31 |
self.register_buffer("samples", torch.zeros((batch_size,), dtype=torch.int32), persistent=False)
|
32 |
|
33 |
self.__CUDAGraph: Optional[CUDAGraph] = None
|
|
|
34 |
|
35 |
def empty_cache(self):
|
36 |
self.logits.zero_()
|
@@ -139,6 +145,7 @@ class Sampler(nn.Module):
|
|
139 |
return idx_next
|
140 |
|
141 |
def capture(self, temperature: float, top_k: int, top_p: float):
|
|
|
142 |
s = torch.cuda.Stream()
|
143 |
s.wait_stream(torch.cuda.current_stream())
|
144 |
|
@@ -153,7 +160,9 @@ class Sampler(nn.Module):
|
|
153 |
with torch.cuda.graph(self.__CUDAGraph):
|
154 |
self.samples = self.__sample_cuda_graph(logits, temperature, top_k, top_p)
|
155 |
torch.cuda.synchronize()
|
|
|
156 |
|
|
|
157 |
def sample(
|
158 |
self,
|
159 |
logits: Tensor,
|
@@ -162,21 +171,32 @@ class Sampler(nn.Module):
|
|
162 |
top_k: int,
|
163 |
top_p: float,
|
164 |
repetition_penalty: float,
|
165 |
-
use_cuda_graph=False,
|
166 |
-
idx=-1,
|
167 |
) -> Tensor:
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
|
179 |
-
return samples
|
180 |
|
181 |
|
182 |
class KVCacheABC(ABC, nn.Module):
|
|
|
1 |
+
"""
|
2 |
+
Modified From https://github.com/XXXXRT666/GPT-SoVITS
|
3 |
+
"""
|
4 |
+
|
5 |
from __future__ import annotations
|
6 |
|
7 |
import os
|
8 |
from abc import ABC, abstractmethod
|
9 |
from contextlib import nullcontext
|
10 |
from typing import Any, Dict, List, MutableSequence, Optional, Tuple, Type
|
11 |
+
import time
|
12 |
|
13 |
import torch
|
14 |
import torch._inductor.config
|
|
|
36 |
self.register_buffer("samples", torch.zeros((batch_size,), dtype=torch.int32), persistent=False)
|
37 |
|
38 |
self.__CUDAGraph: Optional[CUDAGraph] = None
|
39 |
+
|
40 |
|
41 |
def empty_cache(self):
|
42 |
self.logits.zero_()
|
|
|
145 |
return idx_next
|
146 |
|
147 |
def capture(self, temperature: float, top_k: int, top_p: float):
|
148 |
+
t1=time.perf_counter()
|
149 |
s = torch.cuda.Stream()
|
150 |
s.wait_stream(torch.cuda.current_stream())
|
151 |
|
|
|
160 |
with torch.cuda.graph(self.__CUDAGraph):
|
161 |
self.samples = self.__sample_cuda_graph(logits, temperature, top_k, top_p)
|
162 |
torch.cuda.synchronize()
|
163 |
+
print("Sample",time.perf_counter()-t1)
|
164 |
|
165 |
+
# @torch.jit.script
|
166 |
def sample(
|
167 |
self,
|
168 |
logits: Tensor,
|
|
|
171 |
top_k: int,
|
172 |
top_p: float,
|
173 |
repetition_penalty: float,
|
|
|
|
|
174 |
) -> Tensor:
|
175 |
+
|
176 |
+
previous_tokens = previous_tokens.long()
|
177 |
+
score = torch.gather(logits, dim=1, index=previous_tokens)
|
178 |
+
score = torch.where(score < 0, score * repetition_penalty, score / repetition_penalty)
|
179 |
+
logits.scatter_(dim=1, index=previous_tokens, src=score)
|
180 |
+
|
181 |
+
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
182 |
+
cum_probs = torch.cumsum(torch.nn.functional.softmax(sorted_logits, dim=-1), dim=-1)
|
183 |
+
sorted_indices_to_remove = cum_probs > top_p
|
184 |
+
sorted_indices_to_remove[:, 0] = False # keep at least one option
|
185 |
+
indices_to_remove = sorted_indices_to_remove.scatter(dim=1, index=sorted_indices, src=sorted_indices_to_remove)
|
186 |
+
logits = logits.masked_fill(indices_to_remove, -float("Inf"))
|
187 |
+
|
188 |
+
logits = logits / max(temperature, 1e-5)
|
189 |
+
|
190 |
+
v, _ = torch.topk(logits, top_k)
|
191 |
+
pivot = v[:, -1].unsqueeze(-1)
|
192 |
+
logits = torch.where(logits < pivot, -float("Inf"), logits)
|
193 |
+
|
194 |
+
probs = torch.nn.functional.softmax(logits, dim=-1)
|
195 |
+
q = torch.empty_like(probs).exponential_(1.0)
|
196 |
+
idx_next = torch.argmax(probs / q, dim=-1, keepdim=True).to(dtype=torch.int32)
|
197 |
+
|
198 |
+
return idx_next
|
199 |
|
|
|
200 |
|
201 |
|
202 |
class KVCacheABC(ABC, nn.Module):
|
AR/models/t2s_model_flash_attn.py
CHANGED
@@ -1,8 +1,12 @@
|
|
1 |
-
|
|
|
|
|
|
|
2 |
import os
|
3 |
import time
|
4 |
import traceback
|
5 |
-
from typing import Dict, List, Tuple
|
|
|
6 |
|
7 |
import flash_attn # type: ignore
|
8 |
import torch
|
@@ -50,7 +54,7 @@ class Attention(AttentionABC):
|
|
50 |
|
51 |
attn: Tensor = flash_attn.flash_attn_with_kvcache(
|
52 |
q, kv_cache.k_cache, kv_cache.v_cache, k, v, cache_seqlens=input_pos - 1
|
53 |
-
)
|
54 |
|
55 |
attn = self.dropout.forward(attn)
|
56 |
|
@@ -215,57 +219,66 @@ class CUDAGraphRunner:
|
|
215 |
|
216 |
self.decoder_path: os.PathLike
|
217 |
self.decoder_model: T2SDecoderABC = decoder_model.to(self.device, self.dtype)
|
|
|
|
|
|
|
|
|
|
|
|
|
218 |
|
219 |
def _handle_request(self, request: T2SRequest) -> List[torch.Tensor]:
|
220 |
with self.device:
|
|
|
|
|
|
|
221 |
decoder = self.decoder_model
|
222 |
session = T2SSession(decoder, request, device=self.device, dtype=self.dtype)
|
223 |
-
|
224 |
-
|
225 |
-
bsz = y.size(0)
|
226 |
t1 = 0.0
|
227 |
-
|
|
|
228 |
torch_profiler = TorchProfiler(request.debug)
|
229 |
-
|
230 |
with torch_profiler.profiler():
|
231 |
for idx in tqdm(range(1500)):
|
232 |
if idx == 0:
|
233 |
-
xy_dec = decoder.h.prefill(session.xy_pos, session.attn_mask_nested,
|
234 |
xy_dec = torch.stack([t[[-1]] for t in xy_dec.unbind()])
|
235 |
else:
|
236 |
-
if request.use_cuda_graph and
|
237 |
-
|
238 |
args, kwds = decoder.pre_forward(session)
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
kv_caches=
|
244 |
*args,
|
245 |
**kwds,
|
246 |
)
|
247 |
|
248 |
with torch_profiler.record("AR"):
|
249 |
-
if
|
250 |
-
|
251 |
-
|
252 |
-
xy_dec =
|
253 |
else:
|
254 |
args, kwds = decoder.pre_forward(session)
|
255 |
xy_dec = decoder.h.forward(
|
256 |
-
|
257 |
session.xy_pos,
|
258 |
-
|
259 |
*args,
|
260 |
**kwds,
|
261 |
)
|
|
|
262 |
decoder.post_forward(idx, session)
|
263 |
logits = decoder.ar_predict_layer(xy_dec[:, -1])
|
264 |
-
|
265 |
|
266 |
if idx == 0:
|
267 |
-
logits
|
268 |
-
|
269 |
with torch_profiler.record("Sampling"):
|
270 |
samples = session.sampler.sample(
|
271 |
logits=logits,
|
@@ -274,27 +287,26 @@ class CUDAGraphRunner:
|
|
274 |
top_p=request.top_p,
|
275 |
repetition_penalty=request.repetition_penalty,
|
276 |
temperature=request.temperature,
|
277 |
-
use_cuda_graph=request.use_cuda_graph,
|
278 |
-
idx=idx,
|
279 |
)
|
280 |
|
281 |
session.y = torch.cat([session.y, samples], dim=1)
|
282 |
|
|
|
283 |
with torch_profiler.record("EOS"):
|
284 |
argmax_token = torch.argmax(logits, dim=-1)
|
285 |
sample_token = samples.squeeze(1)
|
286 |
EOS_mask = (argmax_token == decoder.EOS) | (sample_token == decoder.EOS)
|
287 |
-
|
288 |
newly_done_mask = EOS_mask & (~session.completed)
|
289 |
-
with torch_profiler.record("EOS2"):
|
290 |
newly_done_indices = newly_done_mask.nonzero()
|
291 |
-
|
|
|
292 |
if newly_done_indices.numel() > 0:
|
293 |
session.y_results[newly_done_indices[0]] = session.y[
|
294 |
newly_done_indices[0], session.y_len : -1
|
295 |
].squeeze(0)
|
296 |
session.completed[newly_done_indices] = True
|
297 |
-
|
298 |
if torch.all(session.completed).item():
|
299 |
if session.y.size(1) == 0:
|
300 |
session.y = torch.cat([session.y, torch.zeros_like(samples)], dim=1)
|
@@ -304,11 +316,12 @@ class CUDAGraphRunner:
|
|
304 |
f"T2S Decoding EOS {session.prefill_len.tolist().__str__().strip('[]')} -> \n{[i.size(0) for i in session.y_results].__str__().strip('[]')}"
|
305 |
)
|
306 |
tqdm.write(f"Infer Speed: {(idx - 1) / (time.perf_counter() - t1):.2f} token/s")
|
|
|
307 |
break
|
308 |
-
|
309 |
if (
|
310 |
-
request.early_stop_num != -1
|
311 |
-
and (session.y.size(1) - session.y_len) > request.early_stop_num
|
312 |
):
|
313 |
for i in range(bsz):
|
314 |
if not session.completed[i].item():
|
@@ -318,14 +331,25 @@ class CUDAGraphRunner:
|
|
318 |
|
319 |
with torch_profiler.record("NextPos"):
|
320 |
y_emb = decoder.ar_audio_embedding(session.y[:, -1:])
|
321 |
-
session.xy_pos = decoder.ar_audio_position.forward(
|
322 |
|
323 |
if idx == 2:
|
324 |
torch_profiler.start()
|
325 |
t1 = time.perf_counter()
|
326 |
|
327 |
-
|
328 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
329 |
|
330 |
match session.device.type:
|
331 |
case "cuda":
|
@@ -336,7 +360,7 @@ class CUDAGraphRunner:
|
|
336 |
torch.xpu.empty_cache()
|
337 |
case "mtia":
|
338 |
torch.mtia.empty_cache()
|
339 |
-
|
340 |
torch_profiler.end()
|
341 |
return session.y_results[: request.valid_length]
|
342 |
|
|
|
1 |
+
"""
|
2 |
+
Modified From https://github.com/XXXXRT666/GPT-SoVITS
|
3 |
+
"""
|
4 |
+
|
5 |
import os
|
6 |
import time
|
7 |
import traceback
|
8 |
+
from typing import Dict, List, Tuple,Optional
|
9 |
+
import gradio as gr
|
10 |
|
11 |
import flash_attn # type: ignore
|
12 |
import torch
|
|
|
54 |
|
55 |
attn: Tensor = flash_attn.flash_attn_with_kvcache(
|
56 |
q, kv_cache.k_cache, kv_cache.v_cache, k, v, cache_seqlens=input_pos - 1
|
57 |
+
) # type: ignore
|
58 |
|
59 |
attn = self.dropout.forward(attn)
|
60 |
|
|
|
219 |
|
220 |
self.decoder_path: os.PathLike
|
221 |
self.decoder_model: T2SDecoderABC = decoder_model.to(self.device, self.dtype)
|
222 |
+
|
223 |
+
self.graph: Optional[torch.cuda.CUDAGraph]= None
|
224 |
+
self.xy_pos_ = torch.rand((1, 1, decoder_model.embedding_dim),device=device).to(dtype)
|
225 |
+
self.xy_dec_ = torch.rand((1, 1, decoder_model.embedding_dim),device=device).to(dtype)
|
226 |
+
self.kv_cache = decoder_model.init_cache(1)
|
227 |
+
self.input_pos = torch.tensor([10]).int().cuda()
|
228 |
|
229 |
def _handle_request(self, request: T2SRequest) -> List[torch.Tensor]:
|
230 |
with self.device:
|
231 |
+
for i in self.kv_cache:
|
232 |
+
i.empty()
|
233 |
+
|
234 |
decoder = self.decoder_model
|
235 |
session = T2SSession(decoder, request, device=self.device, dtype=self.dtype)
|
236 |
+
self.input_pos.copy_(session.input_pos)
|
237 |
+
|
|
|
238 |
t1 = 0.0
|
239 |
+
y = session.y
|
240 |
+
bsz = y.size(0)
|
241 |
torch_profiler = TorchProfiler(request.debug)
|
|
|
242 |
with torch_profiler.profiler():
|
243 |
for idx in tqdm(range(1500)):
|
244 |
if idx == 0:
|
245 |
+
xy_dec = decoder.h.prefill(session.xy_pos, session.attn_mask_nested, self.kv_cache)
|
246 |
xy_dec = torch.stack([t[[-1]] for t in xy_dec.unbind()])
|
247 |
else:
|
248 |
+
if request.use_cuda_graph and self.graph is None and torch.cuda.is_available():
|
249 |
+
self.xy_pos_.copy_(session.xy_pos)
|
250 |
args, kwds = decoder.pre_forward(session)
|
251 |
+
self.graph = decoder.capture(
|
252 |
+
self.input_pos,
|
253 |
+
self.xy_pos_,
|
254 |
+
self.xy_dec_,
|
255 |
+
kv_caches=self.kv_cache,
|
256 |
*args,
|
257 |
**kwds,
|
258 |
)
|
259 |
|
260 |
with torch_profiler.record("AR"):
|
261 |
+
if self.graph:
|
262 |
+
self.xy_pos_.copy_(session.xy_pos)
|
263 |
+
self.graph.replay()
|
264 |
+
xy_dec = self.xy_dec_.clone()
|
265 |
else:
|
266 |
args, kwds = decoder.pre_forward(session)
|
267 |
xy_dec = decoder.h.forward(
|
268 |
+
self.input_pos,
|
269 |
session.xy_pos,
|
270 |
+
self.kv_cache,
|
271 |
*args,
|
272 |
**kwds,
|
273 |
)
|
274 |
+
|
275 |
decoder.post_forward(idx, session)
|
276 |
logits = decoder.ar_predict_layer(xy_dec[:, -1])
|
277 |
+
self.input_pos.add_(1)
|
278 |
|
279 |
if idx == 0:
|
280 |
+
logits[:, -1] = float("-inf")
|
281 |
+
|
282 |
with torch_profiler.record("Sampling"):
|
283 |
samples = session.sampler.sample(
|
284 |
logits=logits,
|
|
|
287 |
top_p=request.top_p,
|
288 |
repetition_penalty=request.repetition_penalty,
|
289 |
temperature=request.temperature,
|
|
|
|
|
290 |
)
|
291 |
|
292 |
session.y = torch.cat([session.y, samples], dim=1)
|
293 |
|
294 |
+
|
295 |
with torch_profiler.record("EOS"):
|
296 |
argmax_token = torch.argmax(logits, dim=-1)
|
297 |
sample_token = samples.squeeze(1)
|
298 |
EOS_mask = (argmax_token == decoder.EOS) | (sample_token == decoder.EOS)
|
299 |
+
|
300 |
newly_done_mask = EOS_mask & (~session.completed)
|
|
|
301 |
newly_done_indices = newly_done_mask.nonzero()
|
302 |
+
|
303 |
+
|
304 |
if newly_done_indices.numel() > 0:
|
305 |
session.y_results[newly_done_indices[0]] = session.y[
|
306 |
newly_done_indices[0], session.y_len : -1
|
307 |
].squeeze(0)
|
308 |
session.completed[newly_done_indices] = True
|
309 |
+
|
310 |
if torch.all(session.completed).item():
|
311 |
if session.y.size(1) == 0:
|
312 |
session.y = torch.cat([session.y, torch.zeros_like(samples)], dim=1)
|
|
|
316 |
f"T2S Decoding EOS {session.prefill_len.tolist().__str__().strip('[]')} -> \n{[i.size(0) for i in session.y_results].__str__().strip('[]')}"
|
317 |
)
|
318 |
tqdm.write(f"Infer Speed: {(idx - 1) / (time.perf_counter() - t1):.2f} token/s")
|
319 |
+
gr.Info(f"Infer Speed: {(idx - 1) / (time.perf_counter() - t1):.2f} token/s",duration=0.75)
|
320 |
break
|
321 |
+
|
322 |
if (
|
323 |
+
(request.early_stop_num != -1
|
324 |
+
and (session.y.size(1) - session.y_len) > request.early_stop_num )or idx ==1499
|
325 |
):
|
326 |
for i in range(bsz):
|
327 |
if not session.completed[i].item():
|
|
|
331 |
|
332 |
with torch_profiler.record("NextPos"):
|
333 |
y_emb = decoder.ar_audio_embedding(session.y[:, -1:])
|
334 |
+
session.xy_pos = decoder.ar_audio_position.forward(self.input_pos - session.x_lens, y_emb)
|
335 |
|
336 |
if idx == 2:
|
337 |
torch_profiler.start()
|
338 |
t1 = time.perf_counter()
|
339 |
|
340 |
+
if idx == 51:
|
341 |
+
torch_profiler.end()
|
342 |
+
|
343 |
+
if idx % 100 == 0:
|
344 |
+
match session.device.type:
|
345 |
+
case "cuda":
|
346 |
+
torch.cuda.empty_cache()
|
347 |
+
case "mps":
|
348 |
+
torch.mps.empty_cache()
|
349 |
+
case "xpu":
|
350 |
+
torch.xpu.empty_cache()
|
351 |
+
case "mtia":
|
352 |
+
torch.mtia.empty_cache()
|
353 |
|
354 |
match session.device.type:
|
355 |
case "cuda":
|
|
|
360 |
torch.xpu.empty_cache()
|
361 |
case "mtia":
|
362 |
torch.mtia.empty_cache()
|
363 |
+
|
364 |
torch_profiler.end()
|
365 |
return session.y_results[: request.valid_length]
|
366 |
|
README.md
CHANGED
@@ -4,7 +4,7 @@ emoji: 🤗
|
|
4 |
colorFrom: indigo
|
5 |
colorTo: red
|
6 |
sdk: gradio
|
7 |
-
sdk_version:
|
8 |
app_file: inference_webui.py
|
9 |
pinned: false
|
10 |
license: mit
|
|
|
4 |
colorFrom: indigo
|
5 |
colorTo: red
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 5.20.0
|
8 |
app_file: inference_webui.py
|
9 |
pinned: false
|
10 |
license: mit
|
inference_webui.py
CHANGED
@@ -57,6 +57,10 @@ import LangSegment
|
|
57 |
import spaces
|
58 |
import torch
|
59 |
|
|
|
|
|
|
|
|
|
60 |
version = "v2" # os.environ.get("version","v2")
|
61 |
cnhubert_base_path = os.environ.get("cnhubert_base_path", "pretrained_models/chinese-hubert-base")
|
62 |
bert_path = os.environ.get("bert_path", "pretrained_models/chinese-roberta-wwm-ext-large")
|
@@ -540,7 +544,7 @@ def get_tts_wav(
|
|
540 |
if i_text in cache and if_freeze == True:
|
541 |
pred_semantic = cache[i_text]
|
542 |
else:
|
543 |
-
with torch.no_grad():
|
544 |
t2s_request = T2SRequest(
|
545 |
[all_phoneme_ids.squeeze(0)],
|
546 |
all_phoneme_len,
|
@@ -552,7 +556,7 @@ def get_tts_wav(
|
|
552 |
temperature=temperature,
|
553 |
early_stop_num=1500,
|
554 |
use_cuda_graph=True,
|
555 |
-
debug=True,
|
556 |
)
|
557 |
t2s_result = t2s_model.generate(t2s_request)
|
558 |
pred_semantic = t2s_result.result
|
@@ -836,5 +840,4 @@ if __name__ == "__main__":
|
|
836 |
server_name="0.0.0.0",
|
837 |
inbrowser=True,
|
838 |
show_api=False,
|
839 |
-
server_port=1111,
|
840 |
)
|
|
|
57 |
import spaces
|
58 |
import torch
|
59 |
|
60 |
+
import threading
|
61 |
+
|
62 |
+
lock = threading.Lock()
|
63 |
+
|
64 |
version = "v2" # os.environ.get("version","v2")
|
65 |
cnhubert_base_path = os.environ.get("cnhubert_base_path", "pretrained_models/chinese-hubert-base")
|
66 |
bert_path = os.environ.get("bert_path", "pretrained_models/chinese-roberta-wwm-ext-large")
|
|
|
544 |
if i_text in cache and if_freeze == True:
|
545 |
pred_semantic = cache[i_text]
|
546 |
else:
|
547 |
+
with torch.no_grad(),lock:
|
548 |
t2s_request = T2SRequest(
|
549 |
[all_phoneme_ids.squeeze(0)],
|
550 |
all_phoneme_len,
|
|
|
556 |
temperature=temperature,
|
557 |
early_stop_num=1500,
|
558 |
use_cuda_graph=True,
|
559 |
+
# debug=True,
|
560 |
)
|
561 |
t2s_result = t2s_model.generate(t2s_request)
|
562 |
pred_semantic = t2s_result.result
|
|
|
840 |
server_name="0.0.0.0",
|
841 |
inbrowser=True,
|
842 |
show_api=False,
|
|
|
843 |
)
|