Spaces:
Sleeping
Sleeping
Added Kiswahili training script and training data
Browse files- .gitattributes +5 -35
- train_model.py +126 -0
- training_data/grammar.txt +61 -0
- training_data/greetings.txt +119 -0
- training_data/vocubulary.txt +92 -0
.gitattributes
CHANGED
|
@@ -1,35 +1,5 @@
|
|
| 1 |
-
|
| 2 |
-
*.
|
| 3 |
-
*.
|
| 4 |
-
*.
|
| 5 |
-
*.
|
| 6 |
-
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
-
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
-
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
-
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 12 |
-
*.model filter=lfs diff=lfs merge=lfs -text
|
| 13 |
-
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 14 |
-
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 15 |
-
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 16 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 17 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 18 |
-
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 19 |
-
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 20 |
-
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 21 |
-
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 22 |
-
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 23 |
-
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 24 |
-
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 25 |
-
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 26 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
-
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
-
*.tar filter=lfs diff=lfs merge=lfs -text
|
| 29 |
-
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 30 |
-
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 31 |
-
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 32 |
-
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 33 |
-
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
-
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
| 1 |
+
# Git attributes
|
| 2 |
+
*.py text
|
| 3 |
+
*.txt text
|
| 4 |
+
*.md text
|
| 5 |
+
*.json text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
train_model.py
ADDED
|
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from transformers import (
|
| 3 |
+
AutoModelForCausalLM,
|
| 4 |
+
AutoTokenizer,
|
| 5 |
+
TrainingArguments,
|
| 6 |
+
Trainer,
|
| 7 |
+
DataCollatorForLanguageModeling
|
| 8 |
+
)
|
| 9 |
+
from datasets import Dataset
|
| 10 |
+
import os
|
| 11 |
+
import glob
|
| 12 |
+
|
| 13 |
+
class KiswahiliTrainer:
|
| 14 |
+
def __init__(self, model_name="distilgpt2"):
|
| 15 |
+
self.model_name = model_name
|
| 16 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 17 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token
|
| 18 |
+
|
| 19 |
+
self.model = AutoModelForCausalLM.from_pretrained(model_name)
|
| 20 |
+
print("✅ Model and tokenizer loaded successfully!")
|
| 21 |
+
|
| 22 |
+
def load_training_data(self, data_dir="./training_data"):
|
| 23 |
+
"""Load all training data from text files"""
|
| 24 |
+
conversations = []
|
| 25 |
+
|
| 26 |
+
# Get all text files in the data directory
|
| 27 |
+
text_files = glob.glob(os.path.join(data_dir, "*.txt"))
|
| 28 |
+
|
| 29 |
+
for file_path in text_files:
|
| 30 |
+
print(f"📖 Loading data from: {file_path}")
|
| 31 |
+
try:
|
| 32 |
+
with open(file_path, 'r', encoding='utf-8') as f:
|
| 33 |
+
content = f.read().strip()
|
| 34 |
+
|
| 35 |
+
# Split by empty lines to get individual Q&A pairs
|
| 36 |
+
pairs = [p.strip() for p in content.split('\n\n') if p.strip()]
|
| 37 |
+
|
| 38 |
+
for pair in pairs:
|
| 39 |
+
if 'User:' in pair and 'Bot:' in pair:
|
| 40 |
+
conversations.append(pair)
|
| 41 |
+
|
| 42 |
+
except Exception as e:
|
| 43 |
+
print(f"❌ Error reading {file_path}: {e}")
|
| 44 |
+
|
| 45 |
+
print(f"📊 Loaded {len(conversations)} training examples")
|
| 46 |
+
return conversations
|
| 47 |
+
|
| 48 |
+
def prepare_dataset(self, conversations):
|
| 49 |
+
"""Prepare the dataset for training"""
|
| 50 |
+
formatted_data = []
|
| 51 |
+
|
| 52 |
+
for conv in conversations:
|
| 53 |
+
# Clean and format the conversation
|
| 54 |
+
formatted_conv = conv.replace('Bot:', 'Assistant:')
|
| 55 |
+
formatted_data.append({"text": formatted_conv})
|
| 56 |
+
|
| 57 |
+
# Create dataset
|
| 58 |
+
dataset = Dataset.from_list(formatted_data)
|
| 59 |
+
|
| 60 |
+
# Tokenize the dataset
|
| 61 |
+
def tokenize_function(examples):
|
| 62 |
+
return self.tokenizer(
|
| 63 |
+
examples["text"],
|
| 64 |
+
truncation=True,
|
| 65 |
+
max_length=512,
|
| 66 |
+
padding="max_length"
|
| 67 |
+
)
|
| 68 |
+
|
| 69 |
+
tokenized_dataset = dataset.map(tokenize_function, batched=True)
|
| 70 |
+
return tokenized_dataset
|
| 71 |
+
|
| 72 |
+
def train(self, output_dir="./trained_model"):
|
| 73 |
+
"""Train the model"""
|
| 74 |
+
# Load training data
|
| 75 |
+
conversations = self.load_training_data()
|
| 76 |
+
|
| 77 |
+
if not conversations:
|
| 78 |
+
print("❌ No training data found!")
|
| 79 |
+
return
|
| 80 |
+
|
| 81 |
+
# Prepare dataset
|
| 82 |
+
dataset = self.prepare_dataset(conversations)
|
| 83 |
+
|
| 84 |
+
# Set up training arguments
|
| 85 |
+
training_args = TrainingArguments(
|
| 86 |
+
output_dir=output_dir,
|
| 87 |
+
num_train_epochs=3,
|
| 88 |
+
per_device_train_batch_size=4,
|
| 89 |
+
save_steps=500,
|
| 90 |
+
save_total_limit=2,
|
| 91 |
+
prediction_loss_only=True,
|
| 92 |
+
logging_dir='./logs',
|
| 93 |
+
logging_steps=100,
|
| 94 |
+
learning_rate=5e-5,
|
| 95 |
+
warmup_steps=100,
|
| 96 |
+
)
|
| 97 |
+
|
| 98 |
+
# Data collator
|
| 99 |
+
data_collator = DataCollatorForLanguageModeling(
|
| 100 |
+
tokenizer=self.tokenizer,
|
| 101 |
+
mlm=False # We're doing causal LM, not masked LM
|
| 102 |
+
)
|
| 103 |
+
|
| 104 |
+
# Initialize Trainer
|
| 105 |
+
trainer = Trainer(
|
| 106 |
+
model=self.model,
|
| 107 |
+
args=training_args,
|
| 108 |
+
train_dataset=dataset,
|
| 109 |
+
data_collator=data_collator,
|
| 110 |
+
tokenizer=self.tokenizer,
|
| 111 |
+
)
|
| 112 |
+
|
| 113 |
+
# Start training
|
| 114 |
+
print("🚀 Starting training...")
|
| 115 |
+
trainer.train()
|
| 116 |
+
|
| 117 |
+
# Save the model
|
| 118 |
+
print("💾 Saving model...")
|
| 119 |
+
trainer.save_model()
|
| 120 |
+
self.tokenizer.save_pretrained(output_dir)
|
| 121 |
+
print(f"✅ Training complete! Model saved to {output_dir}")
|
| 122 |
+
|
| 123 |
+
# Run training
|
| 124 |
+
if __name__ == "__main__":
|
| 125 |
+
trainer = KiswahiliTrainer()
|
| 126 |
+
trainer.train()
|
training_data/grammar.txt
ADDED
|
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
User: Unatumia "ni" na "si" vipi?
|
| 2 |
+
Bot: "Ni" hutumika kwa uhalisiano mzuri. Mfano: "Mimi ni mwalimu". "Si" hutumika kukana. Mfano: "Mimi si mwalimu".
|
| 3 |
+
|
| 4 |
+
User: Tofautisha kati ya "yeye" na "wewe"
|
| 5 |
+
Bot: "Wewe" ni kiwakilishi cha mtu wa pili (you). "Yeye" ni kiwakilishi cha mtu wa tatu (he/she).
|
| 6 |
+
|
| 7 |
+
User: Nini maana ya viwakilishi nafsi?
|
| 8 |
+
Bot: Viwakilishi nafsi ni maneno yanayowakilisha watu kwenye sentensi. Kuna: mimi, wewe, yeye, sisi, nyinyi, wao.
|
| 9 |
+
|
| 10 |
+
User: Je, "mtoto" ni ngeli gani?
|
| 11 |
+
Bot: "Mtoto" ni ngeli ya KI-VI kwa umoja na WA-WA kwa wingi: mtoto/watoto.
|
| 12 |
+
|
| 13 |
+
User: Toa mifano ya vitenzi vya kutendwa na kutendesha
|
| 14 |
+
Bot: Kutendwa: "Kitabu kimesomwa na Juma". Kutendesha: "Juma amekisoma kitabu".
|
| 15 |
+
|
| 16 |
+
User: Nini tofauti kati ya "liko" na "iko"?
|
| 17 |
+
Bot: "Liko" hutumika kwa vitu vya ngeli ya LI-YA. "Iko" hutumika kwa vitu vya ngeli ya I-ZI na N-ZI.
|
| 18 |
+
|
| 19 |
+
User: Vitenzi vya kupishana hutumikaje?
|
| 20 |
+
Bot: Vitenzi vya kupishana huonyesha vitendo vinavyofanyika kwa pande zote mbili. Mfano: "Juma na Asha wanapendana".
|
| 21 |
+
|
| 22 |
+
User: Nini maana ya kauli ya kutendwa?
|
| 23 |
+
Bot: Kauli ya kutendwa huonyesha kitendo kinachotendwa kwa mtu au kitu. Mfano: "Chakula kimepakuliwa na mama".
|
| 24 |
+
|
| 25 |
+
User: Taja vitenzi vya nyakati tofauti
|
| 26 |
+
Bot: 1. Wakati uliopita: "nilisoma"
|
| 27 |
+
2. Wakati ujao: "nitasoma"
|
| 28 |
+
3. Wakati uliopo: "ninasoma"
|
| 29 |
+
|
| 30 |
+
User: Nini tofauti kati ya "huwa" na "awa"?
|
| 31 |
+
Bot: "Huwa" ni kiwakilishi cha mtu wa tatu wingi (they). "Awa" si neno sahihi cha Kiswahili.
|
| 32 |
+
|
| 33 |
+
User: Je, "kula" na "mla" ni vitenzi sawa?
|
| 34 |
+
Bot: Hapana, "kula" ni kitenzi cha msingi (to eat). "Mla" ni neno linalomaanisha "mlaji" (eater) au hutumika kwa ngeli ya M-WA.
|
| 35 |
+
|
| 36 |
+
User: Nini maana ya "na" katika sentensi?
|
| 37 |
+
Bot: "Na" inaweza kuwa kiunganishi (and) au nyakati ya kisasa (present continuous). Mfano: "Juma na Asha" (and) au "Anasoma" (is reading).
|
| 38 |
+
|
| 39 |
+
User: Vitenzi vya kutenda na kutendwa
|
| 40 |
+
Bot: Kutenda: "Mwalimu anafundisha wanafunzi". Kutendwa: "Wanafunzi wanafundishwa na mwalimu".
|
| 41 |
+
|
| 42 |
+
User: Nini maana ya kiulizi?
|
| 43 |
+
Bot: Kiulizi ni neno linalotumika kuuliza swali. Kama: nani, nini, lini, wapi, vipi, kwa nini, gani.
|
| 44 |
+
|
| 45 |
+
User: Tofautisha kati ya "hii" na "hili"
|
| 46 |
+
Bot: "Hii" hutumika kwa vitu vya ngeli ya I-ZI. "Hili" hutumika kwa vitu vya ngeli ya LI-YA.
|
| 47 |
+
|
| 48 |
+
User: Mfano wa sentensi yenye kihusishi
|
| 49 |
+
Bot: Kihusishi ni neno kama "ya", "za", "la". Mfano: "Kitabu cha Juma", "Nyumba za watu".
|
| 50 |
+
|
| 51 |
+
User: Nini maana ya kiwakilishi cha kutaja tena?
|
| 52 |
+
Bot: Ni kiwakilishi kinachotumika badala ya jina lililotajwa tayari. Mfano: "Juma amekuja. Yeye ni mwalimu".
|
| 53 |
+
|
| 54 |
+
User: Taja aina za maneno
|
| 55 |
+
Bot: Kuna: nomino (nouns), vitenzi (verbs), vivumishi (adjectives), viwakilishi (pronouns), vihisishi (adverbs), viunganishi (conjunctions), vihisishi (prepositions), vikundi (interjections).
|
| 56 |
+
|
| 57 |
+
User: Nini tofauti kati ya "kwanza" na "kwanza"?
|
| 58 |
+
Bot: "Kwanza" inamaanisha "first". "Kwanza" si neno sahihi la Kiswahili; sahihi ni "kuanza" (to begin).
|
| 59 |
+
|
| 60 |
+
User: Mfano wa sentensi yenye kirejeshi
|
| 61 |
+
Bot: Kirejeshi ni neno kama "ambaye", "ambacho", "ambao". Mfano: "Mtoto ambaye anasoma", "Kitabu ambacho nasoma".
|
training_data/greetings.txt
ADDED
|
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
User: Habari yako?
|
| 2 |
+
Bot: Nzuri sana, na wewe je?
|
| 3 |
+
|
| 4 |
+
User: Hujambo?
|
| 5 |
+
Bot: Sijambo!
|
| 6 |
+
|
| 7 |
+
User: U hali gani?
|
| 8 |
+
Bot: Niko salama, na wewe je?
|
| 9 |
+
|
| 10 |
+
User: Mambo?
|
| 11 |
+
Bot: Poa!
|
| 12 |
+
|
| 13 |
+
User: Vipi?
|
| 14 |
+
Bot: Safi!
|
| 15 |
+
|
| 16 |
+
User: Shikamoo?
|
| 17 |
+
Bot: Marahaba!
|
| 18 |
+
|
| 19 |
+
User: Hamjambo?
|
| 20 |
+
Bot: Hatujambo!
|
| 21 |
+
|
| 22 |
+
User: Umeamkaje?
|
| 23 |
+
Bot: Nimeamka salama, na wewe umeamkaje?
|
| 24 |
+
|
| 25 |
+
User: Umeshindaje?
|
| 26 |
+
Bot: Nimeshinda vizuri, na wewe umeshindaje?
|
| 27 |
+
|
| 28 |
+
User: Hali za leo?
|
| 29 |
+
Bot: Njema sana, na wewe hali zako?
|
| 30 |
+
|
| 31 |
+
User: Habari za asubuhi?
|
| 32 |
+
Bot: Nzuri sana, habari za asubuhi!
|
| 33 |
+
|
| 34 |
+
User: Habari za mchana?
|
| 35 |
+
Bot: Njema, habari za mchana!
|
| 36 |
+
|
| 37 |
+
User: Habari za jioni?
|
| 38 |
+
Bot: Zipo vizuri, habari za jioni!
|
| 39 |
+
|
| 40 |
+
User: Habari za kazi?
|
| 41 |
+
Bot: Kazi iendelee, Mungu akipenda!
|
| 42 |
+
|
| 43 |
+
User: Habari za nyumbani?
|
| 44 |
+
Bot: Zote vizuri, Mungu akipenda.
|
| 45 |
+
|
| 46 |
+
User: Habari za familia?
|
| 47 |
+
Bot: Wote wazima, na wa kwenu?
|
| 48 |
+
|
| 49 |
+
User: Habari za safari?
|
| 50 |
+
Bot: Safari salama, Mungu akipenda.
|
| 51 |
+
|
| 52 |
+
User: Umetoka wapi?
|
| 53 |
+
Bot: Nimetoka nyumbani/kazini/sokoni.
|
| 54 |
+
|
| 55 |
+
User: Unaenda wapi?
|
| 56 |
+
Bot: Naenda nyumbani/kazini/sokoni.
|
| 57 |
+
|
| 58 |
+
User: Uko poa?
|
| 59 |
+
Bot: Poa kama ndizi!
|
| 60 |
+
|
| 61 |
+
User: Mzima?
|
| 62 |
+
Bot: Mzima wa afya!
|
| 63 |
+
|
| 64 |
+
User: Maisha yanaendelea vipi?
|
| 65 |
+
Bot: Yanadunda, Mungu akipenda.
|
| 66 |
+
|
| 67 |
+
User: Mungu awabariki
|
| 68 |
+
Bot: Amen, na akubariki wewe pia.
|
| 69 |
+
|
| 70 |
+
User: Umepotea wapi?
|
| 71 |
+
Bot: Samahani, nilikuwa na shughuli nyingi.
|
| 72 |
+
|
| 73 |
+
User: Karibu
|
| 74 |
+
Bot: Asante sana kwa kunikaribisha.
|
| 75 |
+
|
| 76 |
+
User: Asante
|
| 77 |
+
Bot: Karibu sana.
|
| 78 |
+
|
| 79 |
+
User: Asante sana
|
| 80 |
+
Bot: Karibu tena.
|
| 81 |
+
|
| 82 |
+
User: Pole na masaa
|
| 83 |
+
Bot: Hamna shida, hakuna haraka.
|
| 84 |
+
|
| 85 |
+
User: Pole na kazi
|
| 86 |
+
Bot: Asante, kazi ni maisha.
|
| 87 |
+
|
| 88 |
+
User: Hongera
|
| 89 |
+
Bot: Asante sana, Mungu akipendelea.
|
| 90 |
+
|
| 91 |
+
User: Usiku mwema
|
| 92 |
+
Bot: Usiku mwema, lala salama.
|
| 93 |
+
|
| 94 |
+
User: Kwaheri
|
| 95 |
+
Bot: Kwaheri, tutaonana tena.
|
| 96 |
+
|
| 97 |
+
User: Tutaonana
|
| 98 |
+
Bot: Ndio, tutaonana baadaye.
|
| 99 |
+
|
| 100 |
+
User: Baadaye
|
| 101 |
+
Bot: Sawa, baadaye.
|
| 102 |
+
|
| 103 |
+
User: Kesho
|
| 104 |
+
Bot: Sawa, kesho.
|
| 105 |
+
|
| 106 |
+
User: Haya
|
| 107 |
+
Bot: Sawa, tuendelee.
|
| 108 |
+
|
| 109 |
+
User: Sawa
|
| 110 |
+
Bot: Sawa kabisa.
|
| 111 |
+
|
| 112 |
+
User: Ahsante kwa msaada
|
| 113 |
+
Bot: Karibu sana, ni furaha yangu.
|
| 114 |
+
|
| 115 |
+
User: Samahani
|
| 116 |
+
Bot: Hamna shida, pole sana.
|
| 117 |
+
|
| 118 |
+
User: Pole
|
| 119 |
+
Bot: Asante, Mungu atasaidia.
|
training_data/vocubulary.txt
ADDED
|
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
User: Nini maana ya "haraka"?
|
| 2 |
+
Bot: "Haraka" inamaanisha kufanya kitu kwa spidi au bila kuchelewesha. Kwa Kiingereza: "quickly" or "fast".
|
| 3 |
+
|
| 4 |
+
User: Nini maana ya "polepole"?
|
| 5 |
+
Bot: "Polepole" inamaanisha kufanya kitu kwa utulivu au kwa mwendo wa chini. Kwa Kiingereza: "slowly".
|
| 6 |
+
|
| 7 |
+
User: Tafsiri "house" kwa Kiswahili
|
| 8 |
+
Bot: "House" inatafsiriwa kama "nyumba" kwa Kiswahili.
|
| 9 |
+
|
| 10 |
+
User: Nini maana ya "chakula"?
|
| 11 |
+
Bot: "Chakula" ni kitu tunachokula kwa kulishiba au kupata nishati. Kwa Kiingereza: "food".
|
| 12 |
+
|
| 13 |
+
User: Tofautisha kati ya "mkate" na "chapo"
|
| 14 |
+
Bot: "Mkate" ni vyakula vilivyookwa kwa unga wa ngano. "Chapo" ni aina ya mkate ulio na mafuta na umekatwa kwa vipande.
|
| 15 |
+
|
| 16 |
+
User: Nini maana ya "maji"?
|
| 17 |
+
Bot: "Maji" ni kiowevu kisicho na rangi au harufu kinachotiririka. Kwa Kiingereza: "water".
|
| 18 |
+
|
| 19 |
+
User: Tafsiri "school" kwa Kiswahili
|
| 20 |
+
Bot: "School" inatafsiriwa kama "shule" kwa Kiswahili.
|
| 21 |
+
|
| 22 |
+
User: Nini maana ya "rafiki"?
|
| 23 |
+
Bot: "Rafiki" ni mtu unaoyefahamiana naye vizuri na una uhusiano mwema. Kwa Kiingereza: "friend".
|
| 24 |
+
|
| 25 |
+
User: Taja maneno matatu yanayohusiana na "mlimajengu"
|
| 26 |
+
Bot: 1. Mlima - mountain
|
| 27 |
+
2. Kilele - peak
|
| 28 |
+
3. Mtelemko - slope
|
| 29 |
+
|
| 30 |
+
User: Nini maana ya "soko"?
|
| 31 |
+
Bot: "Soko" ni mahala panapouzwa na kununuliwa bidhaa mbalimbali. Kwa Kiingereza: "market".
|
| 32 |
+
|
| 33 |
+
User: Tafsiri "book" kwa Kiswahili
|
| 34 |
+
Bot: "Book" inatafsiriwa kama "kitabu" kwa Kiswahili.
|
| 35 |
+
|
| 36 |
+
User: Nini maana ya "mwalimu"?
|
| 37 |
+
Bot: "Mwalimu" ni mtu anayefundisha watu wengine. Kwa Kiingereza: "teacher".
|
| 38 |
+
|
| 39 |
+
User: Tofautisha kati ya "meza" na "kiti"
|
| 40 |
+
Bot: "Meza" ni fanicha ya gorofa inayotumika kuwekea vitu. "Kiti" ni fanicha ya kukalia.
|
| 41 |
+
|
| 42 |
+
User: Nini maana ya "moto"?
|
| 43 |
+
Bot: "Moto" inaweza kumaanisha "fire" (moto) au "child" (mtoto mdogo) kulingana na muktadha.
|
| 44 |
+
|
| 45 |
+
User: Tafsiri "family" kwa Kiswahili
|
| 46 |
+
Bot: "Family" inatafsiriwa kama "familia" au "jamii" kwa Kiswahili.
|
| 47 |
+
|
| 48 |
+
User: Nini maana ya "kupika"?
|
| 49 |
+
Bot: "Kupika" ni kitendo cha kuandaa chakula kwa kutumia joto. Kwa Kiingereza: "to cook".
|
| 50 |
+
|
| 51 |
+
User: Taja maneno matatu ya rangi
|
| 52 |
+
Bot: 1. Nyekundu - red
|
| 53 |
+
2. Blu - blue
|
| 54 |
+
3. Kijani - green
|
| 55 |
+
|
| 56 |
+
User: Nini maana ya "mji"?
|
| 57 |
+
Bot: "Mji" ni eneo kubwa lenye watu wengi na majengo. Kwa Kiingereza: "city" or "town".
|
| 58 |
+
|
| 59 |
+
User: Tafsiri "animal" kwa Kiswahili
|
| 60 |
+
Bot: "Animal" inatafsiriwa kama "mnyama" kwa Kiswahili.
|
| 61 |
+
|
| 62 |
+
User: Nini maana ya "mvua"?
|
| 63 |
+
Bot: "Mvua" ni maji yanayomwagika kutoka angani kama matone. Kwa Kiingereza: "rain".
|
| 64 |
+
|
| 65 |
+
User: Tofautisha kati ya "mto" na "ziwa"
|
| 66 |
+
Bot: "Mto" ni mkondo wa maji unaotiririka. "Ziwa" ni mkusanyiko wa maji uliowekwa kwenye bonde.
|
| 67 |
+
|
| 68 |
+
User: Nini maana ya "jua"?
|
| 69 |
+
Bot: "Jua" ni nyota inayotoa mwanga na joto duniani. Kwa Kiingereza: "sun".
|
| 70 |
+
|
| 71 |
+
User: Tafsiri "clothes" kwa Kiswahili
|
| 72 |
+
Bot: "Clothes" inatafsiriwa kama "nguo" kwa Kiswahili.
|
| 73 |
+
|
| 74 |
+
User: Nini maana ya "kulala"?
|
| 75 |
+
Bot: "Kulala" ni kitendo cha kupumzika kwa macho yamefungwa. Kwa Kiingereza: "to sleep".
|
| 76 |
+
|
| 77 |
+
User: Taja maneno matatu ya nambari
|
| 78 |
+
Bot: 1. Moja - one
|
| 79 |
+
2. Mbili - two
|
| 80 |
+
3. Tatu - three
|
| 81 |
+
|
| 82 |
+
User: Nini maana ya "barabara"?
|
| 83 |
+
Bot: "Barabara" ni njia pana iliyotengenezwa kwa magari kupita. Kwa Kiingereza: "road".
|
| 84 |
+
|
| 85 |
+
User: Tafsiri "money" kwa Kiswahili
|
| 86 |
+
Bot: "Money" inatafsiriwa kama "pesa" kwa Kiswahili.
|
| 87 |
+
|
| 88 |
+
User: Nini maana ya "kusoma"?
|
| 89 |
+
Bot: "Kusoma" inaweza kumaanisha kusoma vitabu au kusoma shule. Kwa Kiingereza: "to read" or "to study".
|
| 90 |
+
|
| 91 |
+
User: Tofautisha kati ya "mwezi" na "mwanga"
|
| 92 |
+
Bot: "Mwezi" ni mwangaza unaotoka kwenye mwezi usiku. "Mwanga" ni uangaza wowote unaotoka kwenye vyanzo mbalimbali.
|