Spaces:
Sleeping
Sleeping
Update train_model.py
Browse files- train_model.py +96 -194
train_model.py
CHANGED
|
@@ -1,203 +1,105 @@
|
|
| 1 |
import torch
|
| 2 |
-
from
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
TrainingArguments,
|
| 6 |
-
Trainer,
|
| 7 |
-
DataCollatorWithPadding
|
| 8 |
-
)
|
| 9 |
-
from datasets import Dataset
|
| 10 |
-
import os
|
| 11 |
-
import glob
|
| 12 |
import json
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
print("✅ BERT Model and tokenizer loaded successfully!")
|
| 34 |
-
|
| 35 |
-
def load_training_data(self, data_dir="./training_data"):
|
| 36 |
-
"""Load training data and create response selection pairs"""
|
| 37 |
-
conversation_pairs = []
|
| 38 |
-
text_files = glob.glob(os.path.join(data_dir, "*.txt"))
|
| 39 |
-
|
| 40 |
-
if not text_files:
|
| 41 |
-
print(f"⚠️ Hakuna faili za .txt katika {data_dir}")
|
| 42 |
-
return []
|
| 43 |
-
|
| 44 |
-
for file_path in text_files:
|
| 45 |
-
print(f"📖 Inapakia data kutoka: {file_path}")
|
| 46 |
-
try:
|
| 47 |
-
with open(file_path, 'r', encoding='utf-8') as f:
|
| 48 |
-
content = f.read().strip()
|
| 49 |
-
|
| 50 |
-
# Split by conversation blocks
|
| 51 |
-
blocks = [b.strip() for b in content.split('\n\n') if b.strip()]
|
| 52 |
-
|
| 53 |
-
for block in blocks:
|
| 54 |
-
lines = block.split('\n')
|
| 55 |
-
user_input = None
|
| 56 |
-
assistant_response = None
|
| 57 |
-
|
| 58 |
-
for line in lines:
|
| 59 |
-
if line.startswith('User:'):
|
| 60 |
-
user_input = line.replace('User:', '').strip()
|
| 61 |
-
elif line.startswith('Assistant:'):
|
| 62 |
-
assistant_response = line.replace('Assistant:', '').strip()
|
| 63 |
-
|
| 64 |
-
if user_input and assistant_response:
|
| 65 |
-
# Store as positive example
|
| 66 |
-
conversation_pairs.append({
|
| 67 |
-
'user_input': user_input,
|
| 68 |
-
'response': assistant_response,
|
| 69 |
-
'label': 1 # Positive example
|
| 70 |
-
})
|
| 71 |
-
# Also store the response for later use
|
| 72 |
-
if assistant_response not in self.responses:
|
| 73 |
-
self.responses.append(assistant_response)
|
| 74 |
-
|
| 75 |
-
except Exception as e:
|
| 76 |
-
print(f"❌ Hitilafu wakati wa kusoma {file_path}: {e}")
|
| 77 |
-
|
| 78 |
-
print(f"📊 Imepakika jozi {len(conversation_pairs)} za mazungumzo")
|
| 79 |
-
print(f"📝 Imepatikana majibu {len(self.responses)} ya kipekee")
|
| 80 |
-
return conversation_pairs
|
| 81 |
|
| 82 |
-
|
| 83 |
-
""
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
# Positive example
|
| 88 |
-
training_examples.append({
|
| 89 |
-
'text': f"{pair['user_input']} [SEP] {pair['response']}",
|
| 90 |
-
'label': 1
|
| 91 |
-
})
|
| 92 |
-
|
| 93 |
-
# Create negative examples (random wrong responses)
|
| 94 |
-
for _ in range(2): # 2 negative examples per positive
|
| 95 |
-
if len(self.responses) > 1:
|
| 96 |
-
wrong_responses = [r for r in self.responses if r != pair['response']]
|
| 97 |
-
if wrong_responses:
|
| 98 |
-
wrong_response = np.random.choice(wrong_responses)
|
| 99 |
-
training_examples.append({
|
| 100 |
-
'text': f"{pair['user_input']} [SEP] {wrong_response}",
|
| 101 |
-
'label': 0
|
| 102 |
-
})
|
| 103 |
-
|
| 104 |
-
return training_examples
|
| 105 |
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
truncation=True,
|
| 115 |
-
padding=
|
| 116 |
-
max_length=
|
| 117 |
-
return_tensors=
|
| 118 |
-
)
|
| 119 |
-
|
| 120 |
-
# Create dataset
|
| 121 |
-
class CustomDataset(torch.utils.data.Dataset):
|
| 122 |
-
def __init__(self, encodings, labels):
|
| 123 |
-
self.encodings = encodings
|
| 124 |
-
self.labels = labels
|
| 125 |
-
|
| 126 |
-
def __getitem__(self, idx):
|
| 127 |
-
item = {key: val[idx] for key, val in self.encodings.items()}
|
| 128 |
-
item['labels'] = torch.tensor(self.labels[idx])
|
| 129 |
-
return item
|
| 130 |
-
|
| 131 |
-
def __len__(self):
|
| 132 |
-
return len(self.labels)
|
| 133 |
-
|
| 134 |
-
return CustomDataset(encodings, labels)
|
| 135 |
-
|
| 136 |
-
def train(self, data_dir="./training_data", output_dir="./trained_bert_model"):
|
| 137 |
-
"""Train BERT for response selection"""
|
| 138 |
-
conversation_pairs = self.load_training_data(data_dir=data_dir)
|
| 139 |
-
|
| 140 |
-
if not conversation_pairs:
|
| 141 |
-
print("❌ Hakuna data ya mafunzo! Tafadhali weka faili za .txt katika training_data/")
|
| 142 |
-
return
|
| 143 |
-
|
| 144 |
-
# Create training examples
|
| 145 |
-
training_examples = self.create_training_pairs(conversation_pairs)
|
| 146 |
-
dataset = self.prepare_dataset(training_examples)
|
| 147 |
-
|
| 148 |
-
# BERT-specific training arguments
|
| 149 |
-
training_args = TrainingArguments(
|
| 150 |
-
output_dir=output_dir,
|
| 151 |
-
num_train_epochs=5,
|
| 152 |
-
per_device_train_batch_size=8,
|
| 153 |
-
per_device_eval_batch_size=8,
|
| 154 |
-
warmup_steps=100,
|
| 155 |
-
weight_decay=0.01,
|
| 156 |
-
logging_dir='./logs',
|
| 157 |
-
logging_steps=10,
|
| 158 |
-
evaluation_strategy="no",
|
| 159 |
-
save_strategy="epoch",
|
| 160 |
-
load_best_model_at_end=False,
|
| 161 |
-
fp16=torch.cuda.is_available(),
|
| 162 |
-
)
|
| 163 |
-
|
| 164 |
-
data_collator = DataCollatorWithPadding(tokenizer=self.tokenizer)
|
| 165 |
-
|
| 166 |
-
trainer = Trainer(
|
| 167 |
-
model=self.model,
|
| 168 |
-
args=training_args,
|
| 169 |
-
train_dataset=dataset,
|
| 170 |
-
tokenizer=self.tokenizer,
|
| 171 |
-
data_collator=data_collator,
|
| 172 |
)
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
self.tokenizer.save_pretrained(output_dir)
|
| 180 |
-
|
| 181 |
-
# Save the response bank
|
| 182 |
-
response_data = {
|
| 183 |
-
'responses': self.responses,
|
| 184 |
-
'model_type': 'bert-response-selector'
|
| 185 |
}
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
"
|
| 197 |
-
|
| 198 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 199 |
|
| 200 |
if __name__ == "__main__":
|
| 201 |
-
|
| 202 |
-
trainer = KiswahiliBERTTrainer(model_name=BERT_MODEL_OPTIONS["multilingual"])
|
| 203 |
-
trainer.train()
|
|
|
|
| 1 |
import torch
|
| 2 |
+
from torch.utils.data import Dataset, DataLoader
|
| 3 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AdamW
|
| 4 |
+
import torch.nn.functional as F
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
import json
|
| 6 |
+
import os
|
| 7 |
+
from sklearn.model_selection import train_test_split
|
| 8 |
+
|
| 9 |
+
# --- Config ---
|
| 10 |
+
MODEL_NAME = "bert-base-multilingual-cased"
|
| 11 |
+
TRAINING_FILE = "./training_data/greetings.txt"
|
| 12 |
+
SAVE_PATH = "./trained_bert_model"
|
| 13 |
+
EPOCHS = 3
|
| 14 |
+
BATCH_SIZE = 8
|
| 15 |
+
MAX_LEN = 64
|
| 16 |
+
LEARNING_RATE = 2e-5
|
| 17 |
+
|
| 18 |
+
# --- Load training data ---
|
| 19 |
+
def load_training_data(file_path):
|
| 20 |
+
inputs, responses = [], []
|
| 21 |
+
if not os.path.exists(file_path):
|
| 22 |
+
raise FileNotFoundError(f"{file_path} not found!")
|
| 23 |
+
|
| 24 |
+
with open(file_path, "r", encoding="utf-8") as f:
|
| 25 |
+
lines = [line.strip() for line in f if line.strip()]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
+
for i in range(0, len(lines), 2):
|
| 28 |
+
user_input = lines[i].replace("User:", "").strip()
|
| 29 |
+
assistant_response = lines[i+1].replace("Assistant:", "").strip()
|
| 30 |
+
inputs.append(user_input)
|
| 31 |
+
responses.append(assistant_response)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
+
return inputs, responses
|
| 34 |
+
|
| 35 |
+
# --- Dataset ---
|
| 36 |
+
class KiswahiliDataset(Dataset):
|
| 37 |
+
def __init__(self, inputs, responses, tokenizer):
|
| 38 |
+
self.inputs = inputs
|
| 39 |
+
self.responses = responses
|
| 40 |
+
self.tokenizer = tokenizer
|
| 41 |
+
|
| 42 |
+
def __len__(self):
|
| 43 |
+
return len(self.inputs)
|
| 44 |
+
|
| 45 |
+
def __getitem__(self, idx):
|
| 46 |
+
text = f"{self.inputs[idx]} [SEP] {self.responses[idx]}"
|
| 47 |
+
encoding = self.tokenizer(
|
| 48 |
+
text,
|
| 49 |
truncation=True,
|
| 50 |
+
padding='max_length',
|
| 51 |
+
max_length=MAX_LEN,
|
| 52 |
+
return_tensors='pt'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
)
|
| 54 |
+
# Label 1 = positive example
|
| 55 |
+
label = torch.tensor(1)
|
| 56 |
+
return {
|
| 57 |
+
'input_ids': encoding['input_ids'].squeeze(),
|
| 58 |
+
'attention_mask': encoding['attention_mask'].squeeze(),
|
| 59 |
+
'labels': label
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
}
|
| 61 |
+
|
| 62 |
+
# --- Main training ---
|
| 63 |
+
def main():
|
| 64 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 65 |
+
inputs, responses = load_training_data(TRAINING_FILE)
|
| 66 |
+
|
| 67 |
+
dataset = KiswahiliDataset(inputs, responses, tokenizer)
|
| 68 |
+
train_loader = DataLoader(dataset, batch_size=BATCH_SIZE, shuffle=True)
|
| 69 |
+
|
| 70 |
+
model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME, num_labels=2)
|
| 71 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 72 |
+
model.to(device)
|
| 73 |
+
|
| 74 |
+
optimizer = AdamW(model.parameters(), lr=LEARNING_RATE)
|
| 75 |
+
|
| 76 |
+
model.train()
|
| 77 |
+
for epoch in range(EPOCHS):
|
| 78 |
+
total_loss = 0
|
| 79 |
+
for batch in train_loader:
|
| 80 |
+
optimizer.zero_grad()
|
| 81 |
+
input_ids = batch['input_ids'].to(device)
|
| 82 |
+
attention_mask = batch['attention_mask'].to(device)
|
| 83 |
+
labels = batch['labels'].to(device)
|
| 84 |
+
|
| 85 |
+
outputs = model(input_ids=input_ids, attention_mask=attention_mask, labels=labels)
|
| 86 |
+
loss = outputs.loss
|
| 87 |
+
total_loss += loss.item()
|
| 88 |
+
loss.backward()
|
| 89 |
+
optimizer.step()
|
| 90 |
+
print(f"Epoch {epoch+1}/{EPOCHS} - Loss: {total_loss/len(train_loader):.4f}")
|
| 91 |
+
|
| 92 |
+
# Save model
|
| 93 |
+
if not os.path.exists(SAVE_PATH):
|
| 94 |
+
os.makedirs(SAVE_PATH)
|
| 95 |
+
model.save_pretrained(SAVE_PATH)
|
| 96 |
+
tokenizer.save_pretrained(SAVE_PATH)
|
| 97 |
+
|
| 98 |
+
# Save responses for chatbot
|
| 99 |
+
with open(os.path.join(SAVE_PATH, "responses.json"), "w", encoding="utf-8") as f:
|
| 100 |
+
json.dump({"responses": responses}, f, ensure_ascii=False, indent=4)
|
| 101 |
+
|
| 102 |
+
print(f"✅ Training complete. Model saved to {SAVE_PATH}")
|
| 103 |
|
| 104 |
if __name__ == "__main__":
|
| 105 |
+
main()
|
|
|
|
|
|