Spaces:
Runtime error
Runtime error
import os | |
import gradio as gr | |
import requests | |
import pandas as pd | |
# --- Constants --- | |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
# --- Новый агент: KeywordAgent --- | |
class KeywordAgent: | |
def __init__(self): | |
self.keywords = { | |
"python": "Python — это мощный язык программирования, широко используемый в науке и разработке.", | |
"ai": "AI (искусственный интеллект) позволяет компьютерам решать задачи, которые обычно требуют разума.", | |
"data": "Данные — это основа всех аналитических систем и машинного обучения.", | |
"huggingface": "Hugging Face — это платформа для работы с ИИ, особенно NLP-моделями.", | |
"gradio": "Gradio — это библиотека для создания веб-интерфейсов ИИ-моделей." | |
} | |
self.default_answer = "Извините, я пока не знаю, как ответить на этот вопрос. Попробуйте иначе." | |
def __call__(self, question: str) -> str: | |
print(f"🔎 Вопрос получен: {question[:50]}...") | |
q_lower = question.lower() | |
for word, response in self.keywords.items(): | |
if word in q_lower: | |
print(f"✅ Найдено ключевое слово: {word}") | |
return response | |
print("⚠️ Ключевые слова не найдены.") | |
return self.default_answer | |
# --- Run Agent only --- | |
def run_agent_only(profile: gr.OAuthProfile | None): | |
if not profile: | |
return "Please login first.", None, None | |
try: | |
agent = KeywordAgent() | |
except Exception as e: | |
return f"Error initializing agent: {e}", None, None | |
questions_url = f"{DEFAULT_API_URL}/questions" | |
try: | |
response = requests.get(questions_url, timeout=10) | |
response.raise_for_status() | |
questions_data = response.json() | |
except Exception as e: | |
return f"Failed to fetch questions: {e}", None, None | |
results_log = [] | |
answers_payload = [] | |
for item in questions_data: | |
task_id = item.get("task_id") | |
question_text = item.get("question") | |
if not task_id or not question_text: | |
continue | |
try: | |
answer = agent(question_text) | |
results_log.append({ | |
"Task ID": task_id, | |
"Question": question_text, | |
"Submitted Answer": answer | |
}) | |
answers_payload.append({ | |
"task_id": task_id, | |
"submitted_answer": answer | |
}) | |
except Exception as e: | |
results_log.append({ | |
"Task ID": task_id, | |
"Question": question_text, | |
"Submitted Answer": f"ERROR: {e}" | |
}) | |
return "✅ Answers generated. You can now submit.", pd.DataFrame(results_log), answers_payload | |
# --- Submit only --- | |
def submit_only(profile: gr.OAuthProfile | None, answers_payload: list | None): | |
if not profile: | |
return "Please login first.", None | |
if not answers_payload: | |
return "No answers to submit. Run the agent first.", None | |
username = profile.username | |
space_id = os.getenv("SPACE_ID") | |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" | |
submit_url = f"{DEFAULT_API_URL}/submit" | |
try: | |
submission_data = { | |
"username": username.strip(), | |
"agent_code": agent_code, | |
"answers": answers_payload | |
} | |
response = requests.post(submit_url, json=submission_data, timeout=30) | |
response.raise_for_status() | |
result_data = response.json() | |
final_status = ( | |
f"🎉 Submission Successful!\n" | |
f"👤 User: {result_data.get('username')}\n" | |
f"✅ Score: {result_data.get('score')}%\n" | |
f"🎯 Correct: {result_data.get('correct_count')}/{result_data.get('total_attempted')}" | |
) | |
return final_status, None | |
except Exception as e: | |
return f"❌ Submission failed: {e}", None | |
# --- Gradio UI --- | |
with gr.Blocks() as demo: | |
gr.Markdown("# 🤖 Keyword Agent Evaluation Runner") | |
gr.Markdown(""" | |
**Steps to Complete Your Hugging Face Certification:** | |
1. Clone this Space and build your own logic in the `KeywordAgent`. | |
2. Log in using the Hugging Face button. | |
3. Click `Run Agent` to generate answers. | |
4. Once ready, click `Submit` to send your answers and view your score. | |
""") | |
gr.LoginButton() | |
profile_input = gr.OAuthProfileComponent() | |
run_button = gr.Button("🧠 Run Agent (Generate Answers)") | |
submit_button = gr.Button("📤 Submit All Answers") | |
status_output = gr.Textbox(label="Status", lines=5, interactive=False) | |
results_table = gr.DataFrame(label="Agent Answers", wrap=True) | |
answers_state = gr.State(value=None) | |
run_button.click( | |
fn=run_agent_only, | |
inputs=[profile_input], | |
outputs=[status_output, results_table, answers_state] | |
) | |
submit_button.click( | |
fn=submit_only, | |
inputs=[profile_input, answers_state], | |
outputs=[status_output, results_table] | |
) | |
# --- Startup --- | |
if __name__ == "__main__": | |
print("\n" + "-"*30 + " App Starting " + "-"*30) | |
space_host_startup = os.getenv("SPACE_HOST") | |
space_id_startup = os.getenv("SPACE_ID") | |
if space_host_startup: | |
print(f"✅ SPACE_HOST: https://{space_host_startup}.hf.space") | |
else: | |
print("ℹ️ SPACE_HOST not found.") | |
if space_id_startup: | |
print(f"✅ SPACE_ID: {space_id_startup}") | |
print(f" Repo: https://huggingface.co/spaces/{space_id_startup}") | |
else: | |
print("ℹ️ SPACE_ID not found.") | |
print("-"*(60 + len(" App Starting ")) + "\n") | |
demo.launch(debug=True, share=False) | |