Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -6,15 +6,15 @@ from flask import Flask, render_template, request, send_file
|
|
6 |
from rdkit import Chem
|
7 |
from transformers import AutoModelForMaskedLM, AutoTokenizer
|
8 |
from modelstrc import CVanilla_RNN_Builder, get_mol_from_graph_list
|
9 |
-
|
10 |
from transformers import AutoModel, AutoTokenizer
|
11 |
import torch
|
12 |
-
import numpy as np
|
13 |
import re
|
|
|
|
|
14 |
|
15 |
|
16 |
-
#
|
17 |
-
bio_model_dir = "/app/modelsBioembedSmall"
|
18 |
cvn_model_dir = "/app/models_folder"
|
19 |
UPLOAD_FOLDER = "/app/Samples"
|
20 |
UF="/tmp/"
|
@@ -23,7 +23,7 @@ os.makedirs(bio_model_dir, exist_ok=True)
|
|
23 |
os.makedirs(cvn_model_dir, exist_ok=True)
|
24 |
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
|
25 |
|
26 |
-
#
|
27 |
os.environ["TMPDIR"] = bio_model_dir
|
28 |
os.environ["TEMP"] = bio_model_dir
|
29 |
os.environ["TMP"] = bio_model_dir
|
@@ -31,81 +31,10 @@ os.environ['NUMBA_CACHE_DIR'] = '/app/numba_cache'
|
|
31 |
os.environ['TRANSFORMERS_CACHE'] = '/app/hf_cache'
|
32 |
|
33 |
|
34 |
-
#
|
35 |
-
DROPBOX_LINKS = {
|
36 |
-
"pytorch_model.bin": "https://www.dropbox.com/scl/fi/b41t8c6ji7j6uk5y2jj8g/pytorch_model.bin?rlkey=kuuwkid36ugml560c4a465ilr&st=t60bfemx&dl=1",
|
37 |
-
"config.json": "https://www.dropbox.com/scl/fi/js6czj3kfc4a5kshfkzie/config.json?rlkey=5oysq4ecilnan5tviuqe86v93&st=75zpce8h&dl=1",
|
38 |
-
"tokenizer_config.json": "https://www.dropbox.com/scl/fi/x11poym6mueoxod7xb6f1/tokenizer_config.json?rlkey=s51pik2rkmqp1fu99qj9qaria&st=z9kkcxp7&dl=1",
|
39 |
-
"vocab.txt": "https://www.dropbox.com/scl/fi/v6e2gn10ck4lpx4iv9kpe/vocab.txt?rlkey=dcu29g5ns4wtqdv0pkks0ehx1&st=qt187rhq&dl=1",
|
40 |
-
"special_tokens_map.json": "https://www.dropbox.com/scl/fi/t3lvmp5x28d1zjac3j7ec/special_tokens_map.json?rlkey=z2xbompa54iu4y9qgb5bvmfc9&st=zrxlpjdt&dl=1"
|
41 |
-
}
|
42 |
-
|
43 |
-
# # π₯ Function to Download Model Files
|
44 |
-
# def download_model_files():
|
45 |
-
# for filename, url in DROPBOX_LINKS.items():
|
46 |
-
# file_path = os.path.join(bio_model_dir, filename)
|
47 |
-
# if not os.path.exists(file_path): # Avoid re-downloading
|
48 |
-
# print(f"Downloading {filename}...")
|
49 |
-
# response = requests.get(url, stream=True)
|
50 |
-
# if response.status_code == 200:
|
51 |
-
# with open(file_path, "wb") as f:
|
52 |
-
# for chunk in response.iter_content(chunk_size=1024):
|
53 |
-
# f.write(chunk)
|
54 |
-
# print(f"Downloaded: {filename}")
|
55 |
-
# else:
|
56 |
-
# print(f"Failed to download {filename}")
|
57 |
-
def download_model_files():
|
58 |
-
for filename, url in DROPBOX_LINKS.items():
|
59 |
-
file_path = os.path.join(bio_model_dir, filename)
|
60 |
-
|
61 |
-
print(f"Downloading {filename} (forcing overwrite)...")
|
62 |
-
response = requests.get(url, stream=True)
|
63 |
-
if response.status_code == 200:
|
64 |
-
with open(file_path, "wb") as f:
|
65 |
-
for chunk in response.iter_content(chunk_size=1024):
|
66 |
-
f.write(chunk)
|
67 |
-
print(f"Downloaded: {filename}")
|
68 |
-
else:
|
69 |
-
print(f"Failed to download {filename}")
|
70 |
-
|
71 |
-
# # π₯ Download models before starting
|
72 |
-
# download_model_files()
|
73 |
-
|
74 |
-
# # β
Load ProtTrans-BERT-BFD Model
|
75 |
-
# print("Loading ProtTrans-BERT-BFD model...")
|
76 |
-
# model = AutoModelForMaskedLM.from_pretrained(bio_model_dir)
|
77 |
-
# tokenizer = AutoTokenizer.from_pretrained(bio_model_dir)
|
78 |
-
##
|
79 |
-
### β
Load Bio-Embedding Model
|
80 |
-
##try:
|
81 |
-
## print("Loading ProtTrans-BERT-BFD model...")
|
82 |
-
## embedder = ProtTransBertBFDEmbedder(model_directory=bio_model_dir)
|
83 |
-
##except Exception as e:
|
84 |
-
## print(f"Error loading ProtTrans-BERT-BFD model: {e}")
|
85 |
-
## embedder = None
|
86 |
-
##
|
87 |
-
### 𧬠Generate Bio-Embeddings
|
88 |
-
##def generate_bio_embeddings(sequence):
|
89 |
-
## if embedder is None:
|
90 |
-
## return None
|
91 |
-
## try:
|
92 |
-
## embedding_protein = embedder.embed(sequence)
|
93 |
-
## embedding_per_protein = embedder.reduce_per_protein(embedding_protein)
|
94 |
-
## return np.array(embedding_per_protein).reshape(1, -1)
|
95 |
-
## except Exception as e:
|
96 |
-
## print(f"Embedding Error: {e}")
|
97 |
-
## return None
|
98 |
-
import torch
|
99 |
-
from transformers import AutoTokenizer, AutoModel
|
100 |
-
import re
|
101 |
-
import numpy as np
|
102 |
-
import torch.nn as nn
|
103 |
-
|
104 |
-
# Load ESM2 model and tokenizer
|
105 |
try:
|
106 |
print("Loading ESM2 model...")
|
107 |
-
|
108 |
-
model_name = "facebook/esm2_t6_8M_UR50D" # Smaller model with 320-dim embeddings
|
109 |
|
110 |
tokenizer = AutoTokenizer.from_pretrained(bio_model_dir)
|
111 |
model = AutoModel.from_pretrained(bio_model_dir)
|
@@ -116,7 +45,7 @@ except Exception as e:
|
|
116 |
model = None
|
117 |
tokenizer = None
|
118 |
|
119 |
-
#
|
120 |
class EmbeddingTransformer(nn.Module):
|
121 |
def __init__(self, input_dim, output_dim):
|
122 |
super(EmbeddingTransformer, self).__init__()
|
@@ -125,17 +54,9 @@ class EmbeddingTransformer(nn.Module):
|
|
125 |
def forward(self, x):
|
126 |
return self.linear(x)
|
127 |
|
128 |
-
# Initialize the transformation layer
|
129 |
transformer = EmbeddingTransformer(input_dim=320, output_dim=1024)
|
130 |
|
131 |
-
#
|
132 |
-
def clean_sequence(seq):
|
133 |
-
"""
|
134 |
-
Clean the protein sequence by removing non-standard characters
|
135 |
-
and converting to uppercase.
|
136 |
-
"""
|
137 |
-
return re.sub(r'[^ACDEFGHIKLMNPQRSTVWY]', '', seq.upper())
|
138 |
-
# Function to generate embeddings from a protein sequence
|
139 |
def generate_bio_embeddings(sequence):
|
140 |
"""
|
141 |
Generate protein sequence embeddings using ESM2 model.
|
@@ -145,30 +66,27 @@ def generate_bio_embeddings(sequence):
|
|
145 |
print("Model or tokenizer not loaded.")
|
146 |
return None
|
147 |
|
148 |
-
#sequence = clean_sequence(sequence)
|
149 |
if not sequence:
|
150 |
print("Sequence is empty after cleaning.")
|
151 |
return None
|
152 |
|
153 |
try:
|
154 |
-
|
155 |
inputs = tokenizer(sequence, return_tensors="pt", add_special_tokens=True)
|
156 |
|
157 |
-
|
158 |
with torch.no_grad():
|
159 |
outputs = model(**inputs)
|
160 |
|
161 |
-
|
162 |
-
|
163 |
-
mean_embedding = embeddings.mean(dim=1).squeeze() # shape: (320,)
|
164 |
|
165 |
-
|
166 |
transformed_embedding = transformer(mean_embedding)
|
167 |
|
168 |
-
|
169 |
transformed_embedding = transformed_embedding.detach().numpy()
|
170 |
|
171 |
-
# Return the transformed embedding as a 2D numpy array (1, 1024)
|
172 |
return transformed_embedding.reshape(1, -1)
|
173 |
|
174 |
except Exception as e:
|
@@ -176,7 +94,7 @@ def generate_bio_embeddings(sequence):
|
|
176 |
return None
|
177 |
|
178 |
|
179 |
-
#
|
180 |
def generate_smiles(sequence, n_samples=100):
|
181 |
start_time = time.time()
|
182 |
|
@@ -202,7 +120,7 @@ def generate_smiles(sequence, n_samples=100):
|
|
202 |
elapsed_time = time.time() - start_time
|
203 |
return filename, elapsed_time
|
204 |
|
205 |
-
|
206 |
app = Flask(__name__)
|
207 |
|
208 |
@app.route("/", methods=["GET", "POST"])
|
@@ -225,949 +143,9 @@ def download_file():
|
|
225 |
file_path = os.path.join(UF, "SMILES_GENERATED.txt")
|
226 |
return send_file(file_path, as_attachment=True)
|
227 |
|
228 |
-
|
229 |
if __name__ == "__main__":
|
230 |
app.run(host="0.0.0.0", port=7860)
|
231 |
|
232 |
|
233 |
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
# import os
|
243 |
-
# import time
|
244 |
-
# import requests
|
245 |
-
# import numpy as np
|
246 |
-
# import subprocess
|
247 |
-
# from flask import Flask, render_template, request, send_file
|
248 |
-
# from rdkit import Chem
|
249 |
-
# from transformers import AutoModel
|
250 |
-
# from bio_embeddings.embed import ProtTransBertBFDEmbedder
|
251 |
-
# from modelstrc import CVanilla_RNN_Builder, get_mol_from_graph_list
|
252 |
-
|
253 |
-
# # DROPBOX LINKS FOR MODEL FILES
|
254 |
-
# DROPBOX_LINKS = {
|
255 |
-
# "pytorch_model.bin": "https://www.dropbox.com/scl/fi/b41t8c6ji7j6uk5y2jj8g/pytorch_model.bin?rlkey=kuuwkid36ugml560c4a465ilr&st=t60bfemx&dl=1",
|
256 |
-
# "config.json": "https://www.dropbox.com/scl/fi/js6czj3kfc4a5kshfkzie/config.json?rlkey=5oysq4ecilnan5tviuqe86v93&st=75zpce8h&dl=1",
|
257 |
-
# "tokenizer_config.json": "https://www.dropbox.com/scl/fi/x11poym6mueoxod7xb6f1/tokenizer_config.json?rlkey=s51pik2rkmqp1fu99qj9qaria&st=z9kkcxp7&dl=1",
|
258 |
-
# "vocab.txt": "https://www.dropbox.com/scl/fi/v6e2gn10ck4lpx4iv9kpe/vocab.txt?rlkey=dcu29g5ns4wtqdv0pkks0ehx1&st=qt187rhq&dl=1",
|
259 |
-
# "special_tokens_map.json": "https://www.dropbox.com/scl/fi/t3lvmp5x28d1zjac3j7ec/special_tokens_map.json?rlkey=z2xbompa54iu4y9qgb5bvmfc9&st=zrxlpjdt&dl=1"
|
260 |
-
# }
|
261 |
-
|
262 |
-
# # LOCAL DIRECTORIES
|
263 |
-
# bio_model_dir = os.path.join(os.getcwd(), "modelsBioembed")
|
264 |
-
# cvn_model_dir = os.path.join(os.getcwd(), "models_folder")
|
265 |
-
# UPLOAD_FOLDER = "Samples"
|
266 |
-
|
267 |
-
# os.makedirs(bio_model_dir, exist_ok=True)
|
268 |
-
# os.makedirs(cvn_model_dir, exist_ok=True)
|
269 |
-
# os.makedirs(UPLOAD_FOLDER, exist_ok=True)
|
270 |
-
|
271 |
-
# os.environ["TMPDIR"] = bio_model_dir
|
272 |
-
# os.environ["TEMP"] = bio_model_dir
|
273 |
-
# os.environ["TMP"] = bio_model_dir
|
274 |
-
|
275 |
-
# # FUNCTION TO DOWNLOAD FILES FROM DROPBOX
|
276 |
-
# for file_name, url in DROPBOX_LINKS.items():
|
277 |
-
# file_path = os.path.join(bio_model_dir, file_name)
|
278 |
-
# if not os.path.exists(file_path):
|
279 |
-
# print(f"Downloading {file_name} from Dropbox...")
|
280 |
-
# subprocess.run(["wget", "-O", file_path, url], check=True)
|
281 |
-
# print(f"{file_name} downloaded!")
|
282 |
-
|
283 |
-
# # BIO-EMBEDDING MODEL LOADING
|
284 |
-
# try:
|
285 |
-
# embedder = ProtTransBertBFDEmbedder(model_directory=bio_model_dir)
|
286 |
-
# except Exception as e:
|
287 |
-
# print(f"Error loading ProtTrans-BERT-BFD model: {e}")
|
288 |
-
# embedder = None
|
289 |
-
|
290 |
-
# def generate_bio_embeddings(sequence):
|
291 |
-
# if embedder is None:
|
292 |
-
# return None
|
293 |
-
# try:
|
294 |
-
# embedding_protein = embedder.embed(sequence)
|
295 |
-
# embedding_per_protein = embedder.reduce_per_protein(embedding_protein)
|
296 |
-
# return np.array(embedding_per_protein).reshape(1, -1)
|
297 |
-
# except Exception as e:
|
298 |
-
# print(f"Embedding Error: {e}")
|
299 |
-
# return None
|
300 |
-
|
301 |
-
# def generate_smiles(sequence, n_samples=100):
|
302 |
-
# start_time = time.time()
|
303 |
-
# protein_embedding = generate_bio_embeddings(sequence)
|
304 |
-
# if protein_embedding is None:
|
305 |
-
# return None, "Embedding generation failed!"
|
306 |
-
|
307 |
-
# model = CVanilla_RNN_Builder(cvn_model_dir, gpu_id=None)
|
308 |
-
# samples = model.sample(n_samples, c=protein_embedding[0], output_type='graph')
|
309 |
-
# valid_samples = [sample for sample in samples if sample is not None]
|
310 |
-
|
311 |
-
# smiles_list = [
|
312 |
-
# Chem.MolToSmiles(mol) for mol in get_mol_from_graph_list(valid_samples, sanitize=True) if mol is not None
|
313 |
-
# ]
|
314 |
-
|
315 |
-
# if not smiles_list:
|
316 |
-
# return None, "No valid SMILES generated!"
|
317 |
-
|
318 |
-
# filename = os.path.join(UPLOAD_FOLDER, "SMILES_GENERATED.txt")
|
319 |
-
# with open(filename, "w") as file:
|
320 |
-
# file.write("\n".join(smiles_list))
|
321 |
-
|
322 |
-
# elapsed_time = time.time() - start_time
|
323 |
-
# return filename, elapsed_time
|
324 |
-
|
325 |
-
# app = Flask(__name__)
|
326 |
-
|
327 |
-
# @app.route("/", methods=["GET", "POST"])
|
328 |
-
# def index():
|
329 |
-
# if request.method == "POST":
|
330 |
-
# sequence = request.form["sequence"].strip()
|
331 |
-
# if not sequence:
|
332 |
-
# return render_template("index.html", message="Please enter a valid sequence.")
|
333 |
-
|
334 |
-
# file_path, result = generate_smiles(sequence)
|
335 |
-
# if file_path is None:
|
336 |
-
# return render_template("index.html", message=f"Error: {result}")
|
337 |
-
|
338 |
-
# return render_template("index.html", message="SMILES generated successfully!", file_path=file_path, time_taken=result)
|
339 |
-
|
340 |
-
# return render_template("index.html")
|
341 |
-
|
342 |
-
# @app.route("/download")
|
343 |
-
# def download_file():
|
344 |
-
# file_path = os.path.join(UPLOAD_FOLDER, "SMILES_GENERATED.txt")
|
345 |
-
# return send_file(file_path, as_attachment=True)
|
346 |
-
|
347 |
-
# if __name__ == "__main__":
|
348 |
-
# app.run(host="0.0.0.0", port=8000, debug=True)
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
# import os
|
353 |
-
# import time
|
354 |
-
# import numpy as np
|
355 |
-
# from flask import Flask, render_template, request, send_file
|
356 |
-
# from rdkit import Chem
|
357 |
-
# from transformers import AutoModel
|
358 |
-
# from bio_embeddings.embed import ProtTransBertBFDEmbedder
|
359 |
-
# from modelstrc import CVanilla_RNN_Builder, get_mol_from_graph_list
|
360 |
-
|
361 |
-
# # # DIRECTORIES
|
362 |
-
# # bio_model_dir = os.path.join(os.getcwd(), "modelsBioembed") # For bio-embeddings
|
363 |
-
# # cvn_model_dir = os.path.join(os.getcwd(), "models_folder") # For CVanilla_RNN_Builder
|
364 |
-
# #bio_model_dir = os.getenv("BIO_MODEL_DIR", "modelsBioembed")
|
365 |
-
# bio_model_dir = "/app/modelsBioembed"
|
366 |
-
# cvn_model_dir = os.getenv("CVN_MODEL_DIR", "models_folder")
|
367 |
-
|
368 |
-
|
369 |
-
# os.makedirs(bio_model_dir, exist_ok=True)
|
370 |
-
# os.makedirs(cvn_model_dir, exist_ok=True)
|
371 |
-
|
372 |
-
# os.environ["TMPDIR"] = bio_model_dir
|
373 |
-
# os.environ["TEMP"] = bio_model_dir
|
374 |
-
# os.environ["TMP"] = bio_model_dir
|
375 |
-
|
376 |
-
# UPLOAD_FOLDER = "Samples"
|
377 |
-
# os.makedirs(UPLOAD_FOLDER, exist_ok=True)
|
378 |
-
|
379 |
-
# app = Flask(__name__)
|
380 |
-
|
381 |
-
# # model_path = os.path.join(bio_model_dir, "pytorch_model.bin")
|
382 |
-
# # if not os.path.exists(model_path):
|
383 |
-
# # print("Downloading ProtTrans-BERT-BFD model...")
|
384 |
-
# # AutoModel.from_pretrained("Rostlab/prot_bert_bfd", low_cpu_mem_usage=True).save_pretrained(bio_model_dir)
|
385 |
-
|
386 |
-
|
387 |
-
# # BIO-EMBEDDING MODEL LOADING
|
388 |
-
# try:
|
389 |
-
# print("Loading Model")
|
390 |
-
# embedder = ProtTransBertBFDEmbedder(model_directory=bio_model_dir)
|
391 |
-
# except Exception as e:
|
392 |
-
# print(f"Error loading ProtTrans-BERT-BFD model: {e}")
|
393 |
-
# embedder = None
|
394 |
-
|
395 |
-
# def generate_bio_embeddings(sequence):
|
396 |
-
# """Generate bio-embeddings for a given protein sequence."""
|
397 |
-
# if embedder is None:
|
398 |
-
# return None
|
399 |
-
# try:
|
400 |
-
# embedding_protein = embedder.embed(sequence)
|
401 |
-
# embedding_per_protein = embedder.reduce_per_protein(embedding_protein)
|
402 |
-
# return np.array(embedding_per_protein).reshape(1, -1) # Reshape for model compatibility
|
403 |
-
# except Exception as e:
|
404 |
-
# print(f"Embedding Error: {e}")
|
405 |
-
# return None
|
406 |
-
|
407 |
-
# def generate_smiles(sequence, n_samples=100):
|
408 |
-
# """Generate SMILES from a protein sequence."""
|
409 |
-
# start_time = time.time()
|
410 |
-
|
411 |
-
# protein_embedding = generate_bio_embeddings(sequence)
|
412 |
-
# if protein_embedding is None:
|
413 |
-
# return None, "Embedding generation failed!"
|
414 |
-
|
415 |
-
# # TRAINED CVanilla_RNN_Builder MODEL LOADING
|
416 |
-
# model = CVanilla_RNN_Builder(cvn_model_dir, gpu_id=None)
|
417 |
-
|
418 |
-
# # MOLECULAR GRAPH GENERATION
|
419 |
-
# samples = model.sample(n_samples, c=protein_embedding[0], output_type='graph')
|
420 |
-
# valid_samples = [sample for sample in samples if sample is not None]
|
421 |
-
|
422 |
-
# # CONVERSION TO SMILES
|
423 |
-
# smiles_list = [
|
424 |
-
# Chem.MolToSmiles(mol) for mol in get_mol_from_graph_list(valid_samples, sanitize=True) if mol is not None
|
425 |
-
# ]
|
426 |
-
|
427 |
-
# if not smiles_list:
|
428 |
-
# return None, "No valid SMILES generated!"
|
429 |
-
|
430 |
-
# # SAVING TO FILE
|
431 |
-
# filename = os.path.join(UPLOAD_FOLDER, "SMILES_GENERATED.txt")
|
432 |
-
# with open(filename, "w") as file:
|
433 |
-
# file.write("\n".join(smiles_list))
|
434 |
-
|
435 |
-
# elapsed_time = time.time() - start_time
|
436 |
-
# return filename, elapsed_time
|
437 |
-
|
438 |
-
# @app.route("/", methods=["GET", "POST"])
|
439 |
-
# def index():
|
440 |
-
# if request.method == "POST":
|
441 |
-
# sequence = request.form["sequence"].strip()
|
442 |
-
# if not sequence:
|
443 |
-
# return render_template("index.html", message="Please enter a valid sequence.")
|
444 |
-
|
445 |
-
# file_path, result = generate_smiles(sequence)
|
446 |
-
# if file_path is None:
|
447 |
-
# return render_template("index.html", message=f"Error: {result}")
|
448 |
-
|
449 |
-
# return render_template("index.html", message="SMILES generated successfully!", file_path=file_path, time_taken=result)
|
450 |
-
|
451 |
-
# return render_template("index.html")
|
452 |
-
|
453 |
-
# @app.route("/download")
|
454 |
-
# def download_file():
|
455 |
-
# file_path = os.path.join(UPLOAD_FOLDER, "SMILES_GENERATED.txt")
|
456 |
-
# return send_file(file_path, as_attachment=True)
|
457 |
-
|
458 |
-
# if __name__ == "__main__":
|
459 |
-
# app.run(host="0.0.0.0", port=8000)
|
460 |
-
#MAIN
|
461 |
-
|
462 |
-
|
463 |
-
|
464 |
-
|
465 |
-
# import os
|
466 |
-
# import time
|
467 |
-
# import requests
|
468 |
-
# import numpy as np
|
469 |
-
# from flask import Flask, render_template, request, send_file
|
470 |
-
# from rdkit import Chem
|
471 |
-
# from transformers import AutoModel
|
472 |
-
# from bio_embeddings.embed import ProtTransBertBFDEmbedder
|
473 |
-
# from modelstrc import CVanilla_RNN_Builder, get_mol_from_graph_list
|
474 |
-
|
475 |
-
# # HUGGING FACE MODEL REPO (Replace with your actual Hugging Face username)
|
476 |
-
# MODEL_BASE_URL = "https://huggingface.co/Bhanushray/protein-smiles-model/tree/main"
|
477 |
-
|
478 |
-
# # REQUIRED MODEL FILES
|
479 |
-
# MODEL_FILES = [
|
480 |
-
# "pytorch_model.bin",
|
481 |
-
# "config.json",
|
482 |
-
# "tokenizer_config.json",
|
483 |
-
# "vocab.txt",
|
484 |
-
# "special_tokens_map.json"
|
485 |
-
# ]
|
486 |
-
|
487 |
-
# # DIRECTORIES
|
488 |
-
# bio_model_dir = os.getenv("BIO_MODEL_DIR", "modelsBioembed")
|
489 |
-
# cvn_model_dir = os.getenv("CVN_MODEL_DIR", "models_folder")
|
490 |
-
|
491 |
-
# # bio_model_dir = os.path.join(os.getcwd(), "modelsBioembed") # For bio-embeddings
|
492 |
-
# # cvn_model_dir = os.path.join(os.getcwd(), "models_folder") # For CVanilla_RNN_Builder
|
493 |
-
|
494 |
-
# os.makedirs(bio_model_dir, exist_ok=True)
|
495 |
-
# os.makedirs(cvn_model_dir, exist_ok=True)
|
496 |
-
|
497 |
-
# os.environ["TMPDIR"] = bio_model_dir
|
498 |
-
# os.environ["TEMP"] = bio_model_dir
|
499 |
-
# os.environ["TMP"] = bio_model_dir
|
500 |
-
|
501 |
-
# UPLOAD_FOLDER = "Samples"
|
502 |
-
# os.makedirs(UPLOAD_FOLDER, exist_ok=True)
|
503 |
-
|
504 |
-
# app = Flask(__name__)
|
505 |
-
|
506 |
-
# # DOWNLOAD MODEL FILES IF MISSING
|
507 |
-
# for file_name in MODEL_FILES:
|
508 |
-
# file_path = os.path.join(bio_model_dir, file_name)
|
509 |
-
|
510 |
-
# if not os.path.exists(file_path):
|
511 |
-
# print(f"Downloading {file_name} ...")
|
512 |
-
# response = requests.get(MODEL_BASE_URL + file_name, stream=True)
|
513 |
-
# with open(file_path, "wb") as f:
|
514 |
-
# for chunk in response.iter_content(chunk_size=1024):
|
515 |
-
# f.write(chunk)
|
516 |
-
# print(f"{file_name} downloaded!")
|
517 |
-
|
518 |
-
# # BIO-EMBEDDING MODEL LOADING
|
519 |
-
# try:
|
520 |
-
# embedder = ProtTransBertBFDEmbedder(model_directory=bio_model_dir)
|
521 |
-
# except Exception as e:
|
522 |
-
# print(f"Error loading ProtTrans-BERT-BFD model: {e}")
|
523 |
-
# embedder = None
|
524 |
-
|
525 |
-
# def generate_bio_embeddings(sequence):
|
526 |
-
# """Generate bio-embeddings for a given protein sequence."""
|
527 |
-
# if embedder is None:
|
528 |
-
# return None
|
529 |
-
# try:
|
530 |
-
# embedding_protein = embedder.embed(sequence)
|
531 |
-
# embedding_per_protein = embedder.reduce_per_protein(embedding_protein)
|
532 |
-
# return np.array(embedding_per_protein).reshape(1, -1) # Reshape for model compatibility
|
533 |
-
# except Exception as e:
|
534 |
-
# print(f"Embedding Error: {e}")
|
535 |
-
# return None
|
536 |
-
|
537 |
-
# def generate_smiles(sequence, n_samples=100):
|
538 |
-
# """Generate SMILES from a protein sequence."""
|
539 |
-
# start_time = time.time()
|
540 |
-
|
541 |
-
# protein_embedding = generate_bio_embeddings(sequence)
|
542 |
-
# if protein_embedding is None:
|
543 |
-
# return None, "Embedding generation failed!"
|
544 |
-
|
545 |
-
# # LOAD TRAINED CVanilla_RNN_Builder MODEL
|
546 |
-
# model = CVanilla_RNN_Builder(cvn_model_dir, gpu_id=None)
|
547 |
-
|
548 |
-
# # MOLECULAR GRAPH GENERATION
|
549 |
-
# samples = model.sample(n_samples, c=protein_embedding[0], output_type='graph')
|
550 |
-
# valid_samples = [sample for sample in samples if sample is not None]
|
551 |
-
|
552 |
-
# # CONVERT TO SMILES
|
553 |
-
# smiles_list = [
|
554 |
-
# Chem.MolToSmiles(mol) for mol in get_mol_from_graph_list(valid_samples, sanitize=True) if mol is not None
|
555 |
-
# ]
|
556 |
-
|
557 |
-
# if not smiles_list:
|
558 |
-
# return None, "No valid SMILES generated!"
|
559 |
-
|
560 |
-
# # SAVE TO FILE
|
561 |
-
# filename = os.path.join(UPLOAD_FOLDER, "SMILES_GENERATED.txt")
|
562 |
-
# with open(filename, "w") as file:
|
563 |
-
# file.write("\n".join(smiles_list))
|
564 |
-
|
565 |
-
# elapsed_time = time.time() - start_time
|
566 |
-
# return filename, elapsed_time
|
567 |
-
|
568 |
-
# @app.route("/", methods=["GET", "POST"])
|
569 |
-
# def index():
|
570 |
-
# if request.method == "POST":
|
571 |
-
# sequence = request.form["sequence"].strip()
|
572 |
-
# if not sequence:
|
573 |
-
# return render_template("index.html", message="Please enter a valid sequence.")
|
574 |
-
|
575 |
-
# file_path, result = generate_smiles(sequence)
|
576 |
-
# if file_path is None:
|
577 |
-
# return render_template("index.html", message=f"Error: {result}")
|
578 |
-
|
579 |
-
# return render_template("index.html", message="SMILES generated successfully!", file_path=file_path, time_taken=result)
|
580 |
-
|
581 |
-
# return render_template("index.html")
|
582 |
-
|
583 |
-
# @app.route("/download")
|
584 |
-
# def download_file():
|
585 |
-
# file_path = os.path.join(UPLOAD_FOLDER, "SMILES_GENERATED.txt")
|
586 |
-
# return send_file(file_path, as_attachment=True)
|
587 |
-
|
588 |
-
# if __name__ == "__main__":
|
589 |
-
# app.run(host="0.0.0.0", port=8000, debug=True)
|
590 |
-
|
591 |
-
|
592 |
-
# import os
|
593 |
-
# import time
|
594 |
-
# import numpy as np
|
595 |
-
# from flask import Flask, render_template, request, send_file
|
596 |
-
# from rdkit import Chem
|
597 |
-
# from transformers import AutoModel
|
598 |
-
# from bio_embeddings.embed import ProtTransBertBFDEmbedder
|
599 |
-
# from modelstrc import CVanilla_RNN_Builder, get_mol_from_graph_list
|
600 |
-
|
601 |
-
# # DIRECTORIES
|
602 |
-
# bio_model_dir = os.path.join(os.getcwd(), "modelsBioembed") # For bio-embeddings
|
603 |
-
# cvn_model_dir = os.path.join(os.getcwd(), "models_folder") # For CVanilla_RNN_Builder
|
604 |
-
|
605 |
-
# os.makedirs(bio_model_dir, exist_ok=True)
|
606 |
-
# os.makedirs(cvn_model_dir, exist_ok=True)
|
607 |
-
|
608 |
-
# os.environ["TMPDIR"] = bio_model_dir
|
609 |
-
# os.environ["TEMP"] = bio_model_dir
|
610 |
-
# os.environ["TMP"] = bio_model_dir
|
611 |
-
|
612 |
-
# UPLOAD_FOLDER = "Samples"
|
613 |
-
# os.makedirs(UPLOAD_FOLDER, exist_ok=True)
|
614 |
-
|
615 |
-
# app = Flask(__name__)
|
616 |
-
|
617 |
-
# model_path = os.path.join(bio_model_dir, "pytorch_model.bin")
|
618 |
-
# if not os.path.exists(model_path):
|
619 |
-
# print("Downloading ProtTrans-BERT-BFD model...")
|
620 |
-
# AutoModel.from_pretrained("Rostlab/prot_bert_bfd", low_cpu_mem_usage=True).save_pretrained(bio_model_dir)
|
621 |
-
|
622 |
-
|
623 |
-
# # BIO-EMBEDDING MODEL LOADING
|
624 |
-
# try:
|
625 |
-
# embedder = ProtTransBertBFDEmbedder(model_directory=bio_model_dir)
|
626 |
-
# except Exception as e:
|
627 |
-
# print(f"Error loading ProtTrans-BERT-BFD model: {e}")
|
628 |
-
# embedder = None
|
629 |
-
|
630 |
-
# def generate_bio_embeddings(sequence):
|
631 |
-
# """Generate bio-embeddings for a given protein sequence."""
|
632 |
-
# if embedder is None:
|
633 |
-
# return None
|
634 |
-
# try:
|
635 |
-
# embedding_protein = embedder.embed(sequence)
|
636 |
-
# embedding_per_protein = embedder.reduce_per_protein(embedding_protein)
|
637 |
-
# return np.array(embedding_per_protein).reshape(1, -1) # Reshape for model compatibility
|
638 |
-
# except Exception as e:
|
639 |
-
# print(f"Embedding Error: {e}")
|
640 |
-
# return None
|
641 |
-
|
642 |
-
# def generate_smiles(sequence, n_samples=100):
|
643 |
-
# """Generate SMILES from a protein sequence."""
|
644 |
-
# start_time = time.time()
|
645 |
-
|
646 |
-
# protein_embedding = generate_bio_embeddings(sequence)
|
647 |
-
# if protein_embedding is None:
|
648 |
-
# return None, "Embedding generation failed!"
|
649 |
-
|
650 |
-
# # TRAINED CVanilla_RNN_Builder MODEL LOADING
|
651 |
-
# model = CVanilla_RNN_Builder(cvn_model_dir, gpu_id=None)
|
652 |
-
|
653 |
-
# # MOLECULAR GRAPH GENERATION
|
654 |
-
# samples = model.sample(n_samples, c=protein_embedding[0], output_type='graph')
|
655 |
-
# valid_samples = [sample for sample in samples if sample is not None]
|
656 |
-
|
657 |
-
# # CONVERSION TO SMILES
|
658 |
-
# smiles_list = [
|
659 |
-
# Chem.MolToSmiles(mol) for mol in get_mol_from_graph_list(valid_samples, sanitize=True) if mol is not None
|
660 |
-
# ]
|
661 |
-
|
662 |
-
# if not smiles_list:
|
663 |
-
# return None, "No valid SMILES generated!"
|
664 |
-
|
665 |
-
# # SAVING TO FILE
|
666 |
-
# filename = os.path.join(UPLOAD_FOLDER, "SMILES_GENERATED.txt")
|
667 |
-
# with open(filename, "w") as file:
|
668 |
-
# file.write("\n".join(smiles_list))
|
669 |
-
|
670 |
-
# elapsed_time = time.time() - start_time
|
671 |
-
# return filename, elapsed_time
|
672 |
-
|
673 |
-
# @app.route("/", methods=["GET", "POST"])
|
674 |
-
# def index():
|
675 |
-
# if request.method == "POST":
|
676 |
-
# sequence = request.form["sequence"].strip()
|
677 |
-
# if not sequence:
|
678 |
-
# return render_template("index.html", message="Please enter a valid sequence.")
|
679 |
-
|
680 |
-
# file_path, result = generate_smiles(sequence)
|
681 |
-
# if file_path is None:
|
682 |
-
# return render_template("index.html", message=f"Error: {result}")
|
683 |
-
|
684 |
-
# return render_template("index.html", message="SMILES generated successfully!", file_path=file_path, time_taken=result)
|
685 |
-
|
686 |
-
# return render_template("index.html")
|
687 |
-
|
688 |
-
# @app.route("/download")
|
689 |
-
# def download_file():
|
690 |
-
# file_path = os.path.join(UPLOAD_FOLDER, "SMILES_GENERATED.txt")
|
691 |
-
# return send_file(file_path, as_attachment=True)
|
692 |
-
|
693 |
-
# if __name__ == "__main__":
|
694 |
-
# app.run(host="0.0.0.0", port=8000,debug=True)
|
695 |
-
|
696 |
-
|
697 |
-
|
698 |
-
|
699 |
-
|
700 |
-
|
701 |
-
|
702 |
-
|
703 |
-
|
704 |
-
|
705 |
-
|
706 |
-
|
707 |
-
|
708 |
-
# import os
|
709 |
-
# import time
|
710 |
-
# import numpy as np
|
711 |
-
# from flask import Flask, render_template, request, send_file
|
712 |
-
# from rdkit import Chem
|
713 |
-
# from transformers import AutoModel
|
714 |
-
# from bio_embeddings.embed import ProtTransBertBFDEmbedder
|
715 |
-
# from modelstrc import CVanilla_RNN_Builder, get_mol_from_graph_list
|
716 |
-
# from huggingface_hub import hf_hub_download # Import for direct file download
|
717 |
-
|
718 |
-
# # Define directories for different models
|
719 |
-
# bio_model_dir = os.path.join(os.getcwd(), "modelsBioembed") # For bio-embeddings
|
720 |
-
# cvn_model_dir = os.path.join(os.getcwd(), "models_folder") # For CVanilla_RNN_Builder
|
721 |
-
|
722 |
-
# # Ensure directories exist
|
723 |
-
# os.makedirs(bio_model_dir, exist_ok=True)
|
724 |
-
# os.makedirs(cvn_model_dir, exist_ok=True)
|
725 |
-
|
726 |
-
# UPLOAD_FOLDER = "Samples"
|
727 |
-
# os.makedirs(UPLOAD_FOLDER, exist_ok=True)
|
728 |
-
|
729 |
-
# app = Flask(__name__)
|
730 |
-
|
731 |
-
# # Download only the required pytorch_model.bin file
|
732 |
-
# model_filename = "pytorch_model.bin"
|
733 |
-
# model_path = os.path.join(bio_model_dir, model_filename)
|
734 |
-
# if not os.path.exists(model_path):
|
735 |
-
# print("Downloading pytorch_model.bin from Hugging Face...")
|
736 |
-
# hf_hub_download(repo_id="Rostlab/prot_bert_bfd", filename=model_filename, local_dir=bio_model_dir)
|
737 |
-
|
738 |
-
# # Load bio-embedding model once
|
739 |
-
# embedder = ProtTransBertBFDEmbedder(model_directory=bio_model_dir)
|
740 |
-
|
741 |
-
# def generate_bio_embeddings(sequence):
|
742 |
-
# """Generate bio-embeddings for a given protein sequence."""
|
743 |
-
# try:
|
744 |
-
# embedding_protein = embedder.embed(sequence)
|
745 |
-
# embedding_per_protein = embedder.reduce_per_protein(embedding_protein)
|
746 |
-
# return np.array(embedding_per_protein).reshape(1, -1)
|
747 |
-
# except Exception as e:
|
748 |
-
# print(f"Embedding Error: {e}")
|
749 |
-
# return None
|
750 |
-
|
751 |
-
# def generate_smiles(sequence, n_samples=100):
|
752 |
-
# """Generate SMILES from a protein sequence."""
|
753 |
-
# start_time = time.time()
|
754 |
-
|
755 |
-
# protein_embedding = generate_bio_embeddings(sequence)
|
756 |
-
# if protein_embedding is None:
|
757 |
-
# return None, "Embedding generation failed!"
|
758 |
-
|
759 |
-
# model = CVanilla_RNN_Builder(cvn_model_dir, gpu_id=None)
|
760 |
-
# samples = model.sample(n_samples, c=protein_embedding[0], output_type='graph')
|
761 |
-
# valid_samples = [sample for sample in samples if sample is not None]
|
762 |
-
|
763 |
-
# smiles_list = [
|
764 |
-
# Chem.MolToSmiles(mol) for mol in get_mol_from_graph_list(valid_samples, sanitize=True) if mol is not None
|
765 |
-
# ]
|
766 |
-
|
767 |
-
# if not smiles_list:
|
768 |
-
# return None, "No valid SMILES generated!"
|
769 |
-
|
770 |
-
# filename = os.path.join(UPLOAD_FOLDER, "SMILES_GENERATED.txt")
|
771 |
-
# with open(filename, "w") as file:
|
772 |
-
# file.write("\n".join(smiles_list))
|
773 |
-
|
774 |
-
# elapsed_time = time.time() - start_time
|
775 |
-
# return filename, elapsed_time
|
776 |
-
|
777 |
-
# @app.route("/", methods=["GET", "POST"])
|
778 |
-
# def index():
|
779 |
-
# if request.method == "POST":
|
780 |
-
# sequence = request.form["sequence"].strip()
|
781 |
-
# if not sequence:
|
782 |
-
# return render_template("index.html", message="Please enter a valid sequence.")
|
783 |
-
|
784 |
-
# file_path, result = generate_smiles(sequence)
|
785 |
-
# if file_path is None:
|
786 |
-
# return render_template("index.html", message=f"Error: {result}")
|
787 |
-
|
788 |
-
# return render_template("index.html", message="SMILES generated successfully!", file_path=file_path, time_taken=result)
|
789 |
-
|
790 |
-
# return render_template("index.html")
|
791 |
-
|
792 |
-
# @app.route("/download")
|
793 |
-
# def download_file():
|
794 |
-
# file_path = os.path.join(UPLOAD_FOLDER, "SMILES_GENERATED.txt")
|
795 |
-
# return send_file(file_path, as_attachment=True)
|
796 |
-
|
797 |
-
# if __name__ == "__main__":
|
798 |
-
# app.run(host="0.0.0.0", port=8000, debug=True)
|
799 |
-
|
800 |
-
|
801 |
-
|
802 |
-
|
803 |
-
|
804 |
-
# import os
|
805 |
-
# import time
|
806 |
-
# import requests
|
807 |
-
# import numpy as np
|
808 |
-
# import gdown # NEW: For Google Drive downloads
|
809 |
-
# from flask import Flask, render_template, request, send_file
|
810 |
-
# from rdkit import Chem
|
811 |
-
# from transformers import AutoModel
|
812 |
-
# from bio_embeddings.embed import ProtTransBertBFDEmbedder
|
813 |
-
# from modelstrc import CVanilla_RNN_Builder, get_mol_from_graph_list
|
814 |
-
|
815 |
-
# # REPLACE WITH YOUR GOOGLE DRIVE FILE IDs
|
816 |
-
# GDRIVE_FILE_IDS = {
|
817 |
-
# "pytorch_model.bin": "11g7bAXYNxlPsnwC8_qsUIZITAjG85JXb", # Replace with actual ID
|
818 |
-
# "config.json": "1ZfuhTnEuKAI1Z92m1QnDTOEQYNe9y24E",
|
819 |
-
# "tokenizer_config.json": "1r4ncUsWBNQZVKp4zw97DLTf0AgRUiuFc",
|
820 |
-
# "vocab.txt": "1G1UQIGMHvCC3OokCG1tl-cTxjIVqw04w",
|
821 |
-
# "special_tokens_map.json": "1pINnV2P1eBmaC7X0A52UhjrmlJgzxqbl"
|
822 |
-
# }
|
823 |
-
|
824 |
-
# # LOCAL DIRECTORIES
|
825 |
-
# bio_model_dir = os.path.join(os.getcwd(), "modelsBioembed") # For bio-embeddings
|
826 |
-
# cvn_model_dir = os.path.join(os.getcwd(), "models_folder") # For CVanilla_RNN_Builder
|
827 |
-
|
828 |
-
# os.makedirs(bio_model_dir, exist_ok=True)
|
829 |
-
# os.makedirs(cvn_model_dir, exist_ok=True)
|
830 |
-
|
831 |
-
# os.environ["TMPDIR"] = bio_model_dir
|
832 |
-
# os.environ["TEMP"] = bio_model_dir
|
833 |
-
# os.environ["TMP"] = bio_model_dir
|
834 |
-
|
835 |
-
# UPLOAD_FOLDER = "Samples"
|
836 |
-
# os.makedirs(UPLOAD_FOLDER, exist_ok=True)
|
837 |
-
|
838 |
-
# app = Flask(__name__)
|
839 |
-
|
840 |
-
# # DOWNLOAD MODEL FILES IF MISSING
|
841 |
-
# for file_name, file_id in GDRIVE_FILE_IDS.items():
|
842 |
-
# file_path = os.path.join(bio_model_dir, file_name)
|
843 |
-
|
844 |
-
# if not os.path.exists(file_path):
|
845 |
-
# print(f"Downloading {file_name} from Google Drive...")
|
846 |
-
# gdown.download(f"https://drive.google.com/uc?id={file_id}", file_path, quiet=False)
|
847 |
-
# print(f"{file_name} downloaded!")
|
848 |
-
|
849 |
-
# # BIO-EMBEDDING MODEL LOADING
|
850 |
-
# try:
|
851 |
-
# embedder = ProtTransBertBFDEmbedder(model_directory=bio_model_dir)
|
852 |
-
# except Exception as e:
|
853 |
-
# print(f"Error loading ProtTrans-BERT-BFD model: {e}")
|
854 |
-
# embedder = None
|
855 |
-
|
856 |
-
# def generate_bio_embeddings(sequence):
|
857 |
-
# """Generate bio-embeddings for a given protein sequence."""
|
858 |
-
# if embedder is None:
|
859 |
-
# return None
|
860 |
-
# try:
|
861 |
-
# embedding_protein = embedder.embed(sequence)
|
862 |
-
# embedding_per_protein = embedder.reduce_per_protein(embedding_protein)
|
863 |
-
# return np.array(embedding_per_protein).reshape(1, -1) # Reshape for model compatibility
|
864 |
-
# except Exception as e:
|
865 |
-
# print(f"Embedding Error: {e}")
|
866 |
-
# return None
|
867 |
-
|
868 |
-
# def generate_smiles(sequence, n_samples=100):
|
869 |
-
# """Generate SMILES from a protein sequence."""
|
870 |
-
# start_time = time.time()
|
871 |
-
|
872 |
-
# protein_embedding = generate_bio_embeddings(sequence)
|
873 |
-
# if protein_embedding is None:
|
874 |
-
# return None, "Embedding generation failed!"
|
875 |
-
|
876 |
-
# # LOAD TRAINED CVanilla_RNN_Builder MODEL
|
877 |
-
# model = CVanilla_RNN_Builder(cvn_model_dir, gpu_id=None)
|
878 |
-
|
879 |
-
# # MOLECULAR GRAPH GENERATION
|
880 |
-
# samples = model.sample(n_samples, c=protein_embedding[0], output_type='graph')
|
881 |
-
# valid_samples = [sample for sample in samples if sample is not None]
|
882 |
-
|
883 |
-
# # CONVERT TO SMILES
|
884 |
-
# smiles_list = [
|
885 |
-
# Chem.MolToSmiles(mol) for mol in get_mol_from_graph_list(valid_samples, sanitize=True) if mol is not None
|
886 |
-
# ]
|
887 |
-
|
888 |
-
# if not smiles_list:
|
889 |
-
# return None, "No valid SMILES generated!"
|
890 |
-
|
891 |
-
# # SAVE TO FILE
|
892 |
-
# filename = os.path.join(UPLOAD_FOLDER, "SMILES_GENERATED.txt")
|
893 |
-
# with open(filename, "w") as file:
|
894 |
-
# file.write("\n".join(smiles_list))
|
895 |
-
|
896 |
-
# elapsed_time = time.time() - start_time
|
897 |
-
# return filename, elapsed_time
|
898 |
-
|
899 |
-
# @app.route("/", methods=["GET", "POST"])
|
900 |
-
# def index():
|
901 |
-
# if request.method == "POST":
|
902 |
-
# sequence = request.form["sequence"].strip()
|
903 |
-
# if not sequence:
|
904 |
-
# return render_template("index.html", message="Please enter a valid sequence.")
|
905 |
-
|
906 |
-
# file_path, result = generate_smiles(sequence)
|
907 |
-
# if file_path is None:
|
908 |
-
# return render_template("index.html", message=f"Error: {result}")
|
909 |
-
|
910 |
-
# return render_template("index.html", message="SMILES generated successfully!", file_path=file_path, time_taken=result)
|
911 |
-
|
912 |
-
# return render_template("index.html")
|
913 |
-
|
914 |
-
# @app.route("/download")
|
915 |
-
# def download_file():
|
916 |
-
# file_path = os.path.join(UPLOAD_FOLDER, "SMILES_GENERATED.txt")
|
917 |
-
# return send_file(file_path, as_attachment=True)
|
918 |
-
|
919 |
-
# if __name__ == "__main__":
|
920 |
-
# app.run(host="0.0.0.0", port=8000, debug=True)
|
921 |
-
|
922 |
-
|
923 |
-
|
924 |
-
# import os
|
925 |
-
# import time
|
926 |
-
# import gdown
|
927 |
-
# import numpy as np
|
928 |
-
# from flask import Flask, render_template, request, send_file
|
929 |
-
# from rdkit import Chem
|
930 |
-
# from bio_embeddings.embed import ProtTransBertBFDEmbedder
|
931 |
-
# from modelstrc import CVanilla_RNN_Builder, get_mol_from_graph_list
|
932 |
-
|
933 |
-
# # DIRECTORIES
|
934 |
-
# bio_model_dir = "/app/modelsBioembed"
|
935 |
-
# cvn_model_dir = os.getenv("CVN_MODEL_DIR", "models_folder")
|
936 |
-
# upload_folder = "Samples"
|
937 |
-
|
938 |
-
# # Create directories if they don't exist
|
939 |
-
# os.makedirs(bio_model_dir, exist_ok=True)
|
940 |
-
# os.makedirs(cvn_model_dir, exist_ok=True)
|
941 |
-
# os.makedirs(upload_folder, exist_ok=True)
|
942 |
-
|
943 |
-
# # Google Drive file IDs for the model files
|
944 |
-
# MODEL_FILES = {
|
945 |
-
# "pytorch_model.bin": "1Z9XWk-kP5yrBRdBF_mQPQsM8drqQXafJ",
|
946 |
-
# "config.json": "1adE428T5ZWeosoLsBeX7sVnn6m4VvVgL",
|
947 |
-
# "tokenizer_config.json": "1USvLAZ3dM4TzVSRLjINk2_W989k1HDQ0",
|
948 |
-
# "vocab.txt": "1tsdesfbr61UyLShV0ojvsXOp6VJ9Exrt",
|
949 |
-
# "special_tokens_map.json": "1ChCwdz0NH8ODasqscGwCS9mY7urhQte2",
|
950 |
-
# }
|
951 |
-
|
952 |
-
# # Function to download missing files from Google Drive
|
953 |
-
# def download_model_files():
|
954 |
-
# for filename, file_id in MODEL_FILES.items():
|
955 |
-
# file_path = os.path.join(bio_model_dir, filename)
|
956 |
-
# if not os.path.exists(file_path):
|
957 |
-
# print(f"Downloading {filename} from Google Drive...")
|
958 |
-
# gdown.download(f"https://drive.google.com/uc?id={file_id}", file_path, quiet=False)
|
959 |
-
|
960 |
-
# # Download required model files
|
961 |
-
# download_model_files()
|
962 |
-
# print("All model files are ready!")
|
963 |
-
|
964 |
-
# # Load the ProtTrans-BERT-BFD Model
|
965 |
-
# try:
|
966 |
-
# embedder = ProtTransBertBFDEmbedder(model_directory=bio_model_dir)
|
967 |
-
# print("ProtTrans-BERT-BFD model loaded successfully!")
|
968 |
-
# except Exception as e:
|
969 |
-
# print(f"Error loading model: {e}")
|
970 |
-
# embedder = None
|
971 |
-
|
972 |
-
# # Function to generate protein embeddings
|
973 |
-
# def generate_bio_embeddings(sequence):
|
974 |
-
# if embedder is None:
|
975 |
-
# return None
|
976 |
-
# try:
|
977 |
-
# embedding_protein = embedder.embed(sequence)
|
978 |
-
# embedding_per_protein = embedder.reduce_per_protein(embedding_protein)
|
979 |
-
# return np.array(embedding_per_protein).reshape(1, -1)
|
980 |
-
# except Exception as e:
|
981 |
-
# print(f"Embedding Error: {e}")
|
982 |
-
# return None
|
983 |
-
|
984 |
-
# # Function to generate SMILES from a protein sequence
|
985 |
-
# def generate_smiles(sequence, n_samples=100):
|
986 |
-
# start_time = time.time()
|
987 |
-
|
988 |
-
# protein_embedding = generate_bio_embeddings(sequence)
|
989 |
-
# if protein_embedding is None:
|
990 |
-
# return None, "Embedding generation failed!"
|
991 |
-
|
992 |
-
# # Load the trained CVanilla_RNN_Builder model
|
993 |
-
# model = CVanilla_RNN_Builder(cvn_model_dir, gpu_id=None)
|
994 |
-
|
995 |
-
# # Generate molecular graphs
|
996 |
-
# samples = model.sample(n_samples, c=protein_embedding[0], output_type='graph')
|
997 |
-
# valid_samples = [sample for sample in samples if sample is not None]
|
998 |
-
|
999 |
-
# # Convert to SMILES format
|
1000 |
-
# smiles_list = [
|
1001 |
-
# Chem.MolToSmiles(mol) for mol in get_mol_from_graph_list(valid_samples, sanitize=True) if mol is not None
|
1002 |
-
# ]
|
1003 |
-
|
1004 |
-
# if not smiles_list:
|
1005 |
-
# return None, "No valid SMILES generated!"
|
1006 |
-
|
1007 |
-
# # Save SMILES to a file
|
1008 |
-
# filename = os.path.join(upload_folder, "SMILES_GENERATED.txt")
|
1009 |
-
# with open(filename, "w") as file:
|
1010 |
-
# file.write("\n".join(smiles_list))
|
1011 |
-
|
1012 |
-
# elapsed_time = time.time() - start_time
|
1013 |
-
# return filename, elapsed_time
|
1014 |
-
|
1015 |
-
# # Initialize Flask App
|
1016 |
-
# app = Flask(__name__)
|
1017 |
-
|
1018 |
-
# @app.route("/", methods=["GET", "POST"])
|
1019 |
-
# def index():
|
1020 |
-
# if request.method == "POST":
|
1021 |
-
# sequence = request.form["sequence"].strip()
|
1022 |
-
# if not sequence:
|
1023 |
-
# return render_template("index.html", message="Please enter a valid sequence.")
|
1024 |
-
|
1025 |
-
# file_path, result = generate_smiles(sequence)
|
1026 |
-
# if file_path is None:
|
1027 |
-
# return render_template("index.html", message=f"Error: {result}")
|
1028 |
-
|
1029 |
-
# return render_template("index.html", message="SMILES generated successfully!", file_path=file_path, time_taken=result)
|
1030 |
-
|
1031 |
-
# return render_template("index.html")
|
1032 |
-
|
1033 |
-
# @app.route("/download")
|
1034 |
-
# def download_file():
|
1035 |
-
# file_path = os.path.join(upload_folder, "SMILES_GENERATED.txt")
|
1036 |
-
# return send_file(file_path, as_attachment=True)
|
1037 |
-
|
1038 |
-
# if __name__ == "__main__":
|
1039 |
-
# app.run(host="0.0.0.0", port=8000)
|
1040 |
-
|
1041 |
-
|
1042 |
-
|
1043 |
-
# import os
|
1044 |
-
# import time
|
1045 |
-
# import requests
|
1046 |
-
# from flask import Flask, render_template, request, send_file
|
1047 |
-
# from rdkit import Chem
|
1048 |
-
# from bio_embeddings.embed import ProtTransBertBFDEmbedder
|
1049 |
-
# from modelstrc import CVanilla_RNN_Builder, get_mol_from_graph_list
|
1050 |
-
|
1051 |
-
# # DIRECTORIES
|
1052 |
-
# bio_model_dir = "/app/modelsBioembed"
|
1053 |
-
# cvn_model_dir = os.getenv("CVN_MODEL_DIR", "models_folder")
|
1054 |
-
# upload_folder = "Samples"
|
1055 |
-
|
1056 |
-
# # Create directories if they don't exist
|
1057 |
-
# os.makedirs(bio_model_dir, exist_ok=True)
|
1058 |
-
# os.makedirs(cvn_model_dir, exist_ok=True)
|
1059 |
-
# os.makedirs(upload_folder, exist_ok=True)
|
1060 |
-
|
1061 |
-
# # Google Drive file IDs for the model files
|
1062 |
-
# MODEL_FILES = {
|
1063 |
-
# "pytorch_model.bin": "1Z9XWk-kP5yrBRdBF_mQPQsM8drqQXafJ",
|
1064 |
-
# "config.json": "1adE428T5ZWeosoLsBeX7sVnn6m4VvVgL",
|
1065 |
-
# "tokenizer_config.json": "1USvLAZ3dM4TzVSRLjINk2_W989k1HDQ0",
|
1066 |
-
# "vocab.txt": "1tsdesfbr61UyLShV0ojvsXOp6VJ9Exrt",
|
1067 |
-
# "special_tokens_map.json": "1ChCwdz0NH8ODasqscGwCS9mY7urhQte2",
|
1068 |
-
# }
|
1069 |
-
|
1070 |
-
# # Function to download a file from Google Drive
|
1071 |
-
# def download_file_from_google_drive(file_id, destination):
|
1072 |
-
# URL = f"https://drive.google.com/uc?export=download&id={file_id}"
|
1073 |
-
# session = requests.Session()
|
1074 |
-
# response = session.get(URL, stream=True)
|
1075 |
-
|
1076 |
-
# # Check if the request was successful
|
1077 |
-
# if response.status_code == 200:
|
1078 |
-
# with open(destination, "wb") as f:
|
1079 |
-
# for chunk in response.iter_content(chunk_size=128):
|
1080 |
-
# f.write(chunk)
|
1081 |
-
# print(f"Downloaded {destination}")
|
1082 |
-
# else:
|
1083 |
-
# print(f"Failed to download {destination}")
|
1084 |
-
|
1085 |
-
# # Function to download missing files from Google Drive
|
1086 |
-
# def download_model_files():
|
1087 |
-
# for filename, file_id in MODEL_FILES.items():
|
1088 |
-
# file_path = os.path.join(bio_model_dir, filename)
|
1089 |
-
# if not os.path.exists(file_path):
|
1090 |
-
# print(f"Downloading {filename} from Google Drive...")
|
1091 |
-
# download_file_from_google_drive(file_id, file_path)
|
1092 |
-
|
1093 |
-
# # Download required model files
|
1094 |
-
# download_model_files()
|
1095 |
-
# print("All model files are ready!")
|
1096 |
-
|
1097 |
-
# # Load the ProtTrans-BERT-BFD Model
|
1098 |
-
# try:
|
1099 |
-
# embedder = ProtTransBertBFDEmbedder(model_directory=bio_model_dir)
|
1100 |
-
# print("ProtTrans-BERT-BFD model loaded successfully!")
|
1101 |
-
# except Exception as e:
|
1102 |
-
# print(f"Error loading model: {e}")
|
1103 |
-
# embedder = None
|
1104 |
-
|
1105 |
-
# # Function to generate protein embeddings
|
1106 |
-
# def generate_bio_embeddings(sequence):
|
1107 |
-
# if embedder is None:
|
1108 |
-
# return None
|
1109 |
-
# try:
|
1110 |
-
# embedding_protein = embedder.embed(sequence)
|
1111 |
-
# embedding_per_protein = embedder.reduce_per_protein(embedding_protein)
|
1112 |
-
# return np.array(embedding_per_protein).reshape(1, -1)
|
1113 |
-
# except Exception as e:
|
1114 |
-
# print(f"Embedding Error: {e}")
|
1115 |
-
# return None
|
1116 |
-
|
1117 |
-
# # Function to generate SMILES from a protein sequence
|
1118 |
-
# def generate_smiles(sequence, n_samples=100):
|
1119 |
-
# start_time = time.time()
|
1120 |
-
|
1121 |
-
# protein_embedding = generate_bio_embeddings(sequence)
|
1122 |
-
# if protein_embedding is None:
|
1123 |
-
# return None, "Embedding generation failed!"
|
1124 |
-
|
1125 |
-
# # Load the trained CVanilla_RNN_Builder model
|
1126 |
-
# model = CVanilla_RNN_Builder(cvn_model_dir, gpu_id=None)
|
1127 |
-
|
1128 |
-
# # Generate molecular graphs
|
1129 |
-
# samples = model.sample(n_samples, c=protein_embedding[0], output_type='graph')
|
1130 |
-
# valid_samples = [sample for sample in samples if sample is not None]
|
1131 |
-
|
1132 |
-
# # Convert to SMILES format
|
1133 |
-
# smiles_list = [
|
1134 |
-
# Chem.MolToSmiles(mol) for mol in get_mol_from_graph_list(valid_samples, sanitize=True) if mol is not None
|
1135 |
-
# ]
|
1136 |
-
|
1137 |
-
# if not smiles_list:
|
1138 |
-
# return None, "No valid SMILES generated!"
|
1139 |
-
|
1140 |
-
# # Save SMILES to a file
|
1141 |
-
# filename = os.path.join(upload_folder, "SMILES_GENERATED.txt")
|
1142 |
-
# with open(filename, "w") as file:
|
1143 |
-
# file.write("\n".join(smiles_list))
|
1144 |
-
|
1145 |
-
# elapsed_time = time.time() - start_time
|
1146 |
-
# return filename, elapsed_time
|
1147 |
-
|
1148 |
-
# # Initialize Flask App
|
1149 |
-
# app = Flask(__name__)
|
1150 |
-
|
1151 |
-
# @app.route("/", methods=["GET", "POST"])
|
1152 |
-
# def index():
|
1153 |
-
# if request.method == "POST":
|
1154 |
-
# sequence = request.form["sequence"].strip()
|
1155 |
-
# if not sequence:
|
1156 |
-
# return render_template("index.html", message="Please enter a valid sequence.")
|
1157 |
-
|
1158 |
-
# file_path, result = generate_smiles(sequence)
|
1159 |
-
# if file_path is None:
|
1160 |
-
# return render_template("index.html", message=f"Error: {result}")
|
1161 |
-
|
1162 |
-
# return render_template("index.html", message="SMILES generated successfully!", file_path=file_path, time_taken=result)
|
1163 |
-
|
1164 |
-
# return render_template("index.html")
|
1165 |
-
|
1166 |
-
# @app.route("/download")
|
1167 |
-
# def download_file():
|
1168 |
-
# file_path = os.path.join(upload_folder, "SMILES_GENERATED.txt")
|
1169 |
-
# return send_file(file_path, as_attachment=True)
|
1170 |
-
|
1171 |
-
# if __name__ == "__main__":
|
1172 |
-
# app.run(host="0.0.0.0", port=8000)
|
1173 |
-
|
|
|
6 |
from rdkit import Chem
|
7 |
from transformers import AutoModelForMaskedLM, AutoTokenizer
|
8 |
from modelstrc import CVanilla_RNN_Builder, get_mol_from_graph_list
|
|
|
9 |
from transformers import AutoModel, AutoTokenizer
|
10 |
import torch
|
|
|
11 |
import re
|
12 |
+
import torch.nn as nn
|
13 |
+
|
14 |
|
15 |
|
16 |
+
# DIRECTORIES
|
17 |
+
bio_model_dir = "/app/modelsBioembedSmall"
|
18 |
cvn_model_dir = "/app/models_folder"
|
19 |
UPLOAD_FOLDER = "/app/Samples"
|
20 |
UF="/tmp/"
|
|
|
23 |
os.makedirs(cvn_model_dir, exist_ok=True)
|
24 |
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
|
25 |
|
26 |
+
# ENV VARIABLES
|
27 |
os.environ["TMPDIR"] = bio_model_dir
|
28 |
os.environ["TEMP"] = bio_model_dir
|
29 |
os.environ["TMP"] = bio_model_dir
|
|
|
31 |
os.environ['TRANSFORMERS_CACHE'] = '/app/hf_cache'
|
32 |
|
33 |
|
34 |
+
# ESM2 MODEL AND TOKENIZER
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
try:
|
36 |
print("Loading ESM2 model...")
|
37 |
+
model_name = "facebook/esm2_t6_8M_UR50D" # Smaller model with 320-dim embedding
|
|
|
38 |
|
39 |
tokenizer = AutoTokenizer.from_pretrained(bio_model_dir)
|
40 |
model = AutoModel.from_pretrained(bio_model_dir)
|
|
|
45 |
model = None
|
46 |
tokenizer = None
|
47 |
|
48 |
+
# linear transformation to map 320D embeddings to 1024D
|
49 |
class EmbeddingTransformer(nn.Module):
|
50 |
def __init__(self, input_dim, output_dim):
|
51 |
super(EmbeddingTransformer, self).__init__()
|
|
|
54 |
def forward(self, x):
|
55 |
return self.linear(x)
|
56 |
|
|
|
57 |
transformer = EmbeddingTransformer(input_dim=320, output_dim=1024)
|
58 |
|
59 |
+
# UDF TO GENERATE EMBEDDINGS
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
def generate_bio_embeddings(sequence):
|
61 |
"""
|
62 |
Generate protein sequence embeddings using ESM2 model.
|
|
|
66 |
print("Model or tokenizer not loaded.")
|
67 |
return None
|
68 |
|
|
|
69 |
if not sequence:
|
70 |
print("Sequence is empty after cleaning.")
|
71 |
return None
|
72 |
|
73 |
try:
|
74 |
+
|
75 |
inputs = tokenizer(sequence, return_tensors="pt", add_special_tokens=True)
|
76 |
|
77 |
+
|
78 |
with torch.no_grad():
|
79 |
outputs = model(**inputs)
|
80 |
|
81 |
+
embeddings = outputs.last_hidden_state
|
82 |
+
mean_embedding = embeddings.mean(dim=1).squeeze()
|
|
|
83 |
|
84 |
+
|
85 |
transformed_embedding = transformer(mean_embedding)
|
86 |
|
87 |
+
|
88 |
transformed_embedding = transformed_embedding.detach().numpy()
|
89 |
|
|
|
90 |
return transformed_embedding.reshape(1, -1)
|
91 |
|
92 |
except Exception as e:
|
|
|
94 |
return None
|
95 |
|
96 |
|
97 |
+
# UDF FOR SMILES GENERATION
|
98 |
def generate_smiles(sequence, n_samples=100):
|
99 |
start_time = time.time()
|
100 |
|
|
|
120 |
elapsed_time = time.time() - start_time
|
121 |
return filename, elapsed_time
|
122 |
|
123 |
+
|
124 |
app = Flask(__name__)
|
125 |
|
126 |
@app.route("/", methods=["GET", "POST"])
|
|
|
143 |
file_path = os.path.join(UF, "SMILES_GENERATED.txt")
|
144 |
return send_file(file_path, as_attachment=True)
|
145 |
|
146 |
+
|
147 |
if __name__ == "__main__":
|
148 |
app.run(host="0.0.0.0", port=7860)
|
149 |
|
150 |
|
151 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|