import os import torch from transformers import pipeline from transformers.pipelines.audio_utils import ffmpeg_read import gradio as gr MODEL_NAME = "FarmRadioInternational/luganda-whisper-asr" BATCH_SIZE = 8 device = 0 if torch.cuda.is_available() else "cpu" pipe = pipeline( task="automatic-speech-recognition", model=MODEL_NAME, chunk_length_s=30, device=device, token=os.getenv('HF_TOKEN'), ) def transcribe(inputs, task): if inputs is None: raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.") text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"] return text demo = gr.Blocks() mic_transcribe = gr.Interface( fn=transcribe, inputs=[ gr.Audio(sources="microphone", type="filepath"), gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"), ], outputs="text", # layout="horizontal", theme="huggingface", title="Luganda Whisper Demo: Transcribe Audio", description=( "Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the" f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files" " of arbitrary length." ), allow_flagging="never", ) file_transcribe = gr.Interface( fn=transcribe, inputs=[ gr.Audio(sources="upload", label="Audio file", type="filepath"), gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"), ], outputs="text", # layout="horizontal", theme="huggingface", title="Luganda Whisper Demo: Transcribe Audio", description=( "Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the" f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files" " of arbitrary length." ), examples=[ ["./ama_log-1514-E30_17.wav", "transcribe"], ["./ng_log-1614-E2_364.wav", "transcribe"], ["./New Recording.wav", "transcribe"], ["./New Recording 3.wav", "transcribe"], ], cache_examples=True, allow_flagging="never", ) with demo: gr.TabbedInterface([mic_transcribe, file_transcribe], ["Transcribe Microphone", "Transcribe Audio File"]) demo.queue(max_size=10) demo.launch()