File size: 17,655 Bytes
dfe35ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
import os
import sys

sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
sys.path.append("../..")
from environment.tools import *
from pandas import DataFrame
from typing import Any


class EnvOutput:
    class KeyError(Exception):
        pass

    def __init__(self, success: bool, data: Any):
        self._success = success
        self._data = data
        if isinstance(data, DataFrame):
            self._page_idx = 0
            self._page_total = len(data) // 10 + (1 if len(data) % 10 != 0 else 0)
            self._original_data = data
            self._data = data.head(10)

    def __getitem__(self, key):
        if key == "success":
            return self._success
        if key == "data":
            return self._data
        if key == "whole_data":
            return (
                self._original_data if isinstance(self._data, DataFrame) else self._data
            )
        if key == "str":
            return str(self)
        raise self.KeyError(
            f"Invalid key: {key},only support 'success', 'data', 'whole_data' and 'str'."
        )

    def to_dict(self):
        return {
            "success": self._success,
            "data": self._data,
            "whole_data": (
                self._original_data if isinstance(self._data, DataFrame) else self._data
            ),
            "str": str(self),
        }

    def __str__(self):
        if isinstance(self._data, DataFrame):
            if len(self._data) == 0:
                return "No data."
            header_str = self._data.columns.values
            res = str(header_str) + "\n"
            for i in range(10):
                if i >= len(self._data):
                    break
                res += str(self._data.iloc[i].values) + "\n"
            res += (
                "Page/Total: " + str(self._page_idx + 1) + "/" + str(self._page_total)
            )
            return res
        return str(self._data)

    def next_page(self):
        if not isinstance(self._data, DataFrame):
            return (
                "next_page() is not supported for this data type:"
                + str(type(self._data))
                + "\nonly DataFrame support next_page()."
                + "\nMake sure you are using the correct index. -1 is the lastest result."
            )
        if (self._page_idx - 1) * 10 >= len(self._original_data):
            self._data = "No more data."

        self._page_idx += 1
        self._data = self._original_data.iloc[
            self._page_idx * 10 : (self._page_idx + 1) * 10
        ]
        return self


class WorldEnv:
    """

    World Environment

    Provide APIs to access the virtual world.

    """

    def __init__(self, en_version=False):
        """

        Initialize the world environment.

        """

        self.support_cities = [
            "上海",
            "北京",
            "深圳",
            "广州",
            "重庆",
            "苏州",
            "成都",
            "杭州",
            "武汉",
            "南京",
        ]
        self.attractions = Attractions()
        self.accommodations = Accommodations()
        self.restaurants = Restaurants()
        self.intercitytransport = IntercityTransport()
        self.transportation = Transportation()
        self.poi = Poi()

        self.results = []

    def __call__(self, cmd_str: str):
        """

        Call the API by command string in the format of python function call.

        """
        # init env to execute the command directly
        attractions_keys = self.attractions.keys
        attractions_types = self.attractions.get_type_list
        attractions_select = self.attractions.select
        attractions_id_is_open = self.attractions.id_is_open
        attractions_nearby = self.attractions.nearby

        accommodations_keys = self.accommodations.keys
        accommodations_select = self.accommodations.select
        accommodations_nearby = self.accommodations.nearby

        restaurants_select = self.restaurants.select
        restaurants_keys = self.restaurants.keys
        restaurants_nearby = self.restaurants.nearby
        restaurants_id_is_open = self.restaurants.id_is_open
        restaurants_cuisine = self.restaurants.get_cuisine_list
        restaurants_with_recommended_food = (
            self.restaurants.restaurants_with_recommended_food
        )

        goto = self.transportation.goto
        intercity_transport_select = self.intercitytransport.select
        poi_lat_lon_search = self.poi.search

        next_page = self.next_page
        Results = self.results

        try:
            res = eval(cmd_str)
            if not isinstance(res, EnvOutput):
                res = EnvOutput(True, res)
        except Exception as e:
            res = EnvOutput(False, "Invalid command.\n" + str(e))
        self.results.append(res)
        return self.results[-1]

    def next_page(self):
        """

        Go to the next page.

        """
        if len(self.results) == 0:
            return "No results."
        return self.results[-1].next_page()

    def reset(self):
        """

        Reset the environment.

        """
        self.results = []


__doc__ = """



This file provides an interface to access the virtual world environment.

You can use the WorldEnv as long as you instance WorldEnv class and call the APIs with the command string.

The command string should be in the format of python function call,



for example:

```python

test_env = WorldEnv()

print(test_env("attractions_keys('上海')"))

```



APIs for the World Environment:

(1) attractions_keys(city: str)

Description: Returns a list of (key, type) pairs of the attractions data.

Parameters: 

city: The city name.

(2) attractions_select(city: str, key: str, func: Callable):

Description: Returns a DataFrame with data filtered by the specified key with the specified function.

Parameters:

city: The city name.

key: The key column to filter, only one key can be used. If not specified, return all data.

func: The lambda function applied to the key column, must return a boolean value. Only apply to one key. If not specified, return all data.

(3) attractions_id_is_open(city: str, id: int, time: str):

Description: Returns whether the attraction with the specified ID is open at the specified time.

Parameters:

city: The city name.

id: The ID of the attraction.

time: The time to check, in the format 'HH:MM'.

(4) attractions_nearby(city: str, point: str, topk: int, dist: float):

Description: Returns the top K attractions within the specified distance of the location.

Parameters: 

city: The city name.

point: The name of the location.

topk: The number of attractions to return.

dist: The maximum distance from the location, default is 2.

(5) attractions_types(city: str):

Description: Returns a list of unique attraction types.

Parameters: 

city: The city name.



(6) accommodations_keys(city: str):

Description: Returns a list of (key, type) pairs of the accommodations data.

Parameters: 

city: The city name.

(7) accommodations_select(city: str, key: str = "", func: Callable):

Description: Returns a DataFrame with data filtered by the specified key with the specified function.

Parameters: 

city: The city name.

key: The key column to filter, only one key can be used. If not specified, return all data.

func: The lambda function applied to the key column, must return a boolean value. Only apply to one key. If not specified, return all data.

(8) accommodations_nearby(city: str, point: str, topk: int, dist: float):

Description: Returns the top K accommodations within the specified distance of the location.

Parameters: 

city: The city name.

point: The name of the location.

topk: The number of accommodations to return.

dist: The maximum distance from the location, default is 5.



(9) restaurants_keys(city: str):

Description: Returns a list of (key, type) pairs of the restaurants data.

Parameters: 

city: The city name.

(10) restaurants_select(city: str, key: str = "", func: Callable):

Description: Returns a DataFrame with data filtered by the specified key with the specified function. 

city: The city name.

key: The key column to filter, only one key can be used. If not specified, return all data.

func: The lambda function applied to the key column, must return a boolean value. Only apply to one key. If not specified, return all data.

(11) restaurants_id_is_open(city: str, id: int, time: str):

Description: Returns whether the restaurant with the specified ID is open at the specified time and day.

Parameters: 

city: The city name.

id: The ID of the restaurant.

time: The time to check, in the format 'HH:MM'.

(12) restaurants_nearby(city: str, point: str, topk: int, dist: float):

Description: Returns the top K restaurants within the specified distance of the location.

Parameters: 

city: The city name.

point: The name of the location.

topk: The number of restaurants to return.

dist: The maximum distance from the location, default is 2.

(13) restaurants_restaurants_with_recommended_food(city: str, food: str):

Description: Returns all restaurants with the specified food in their recommended dishes.

Parameters: 

city: The city name.

food: The food to search for.

(14) restaurants_cuisine(city: str):

Description: Returns a list of unique restaurant cuisines.

Parameters: 

city: The city name.



(15) goto(city: str, start: str, end: str, start_time: str, transport_type: str):

Description: Returns a list of transportation options between two locations.

Parameters: 

city: The city name.

start: The start point's name. Must be a location name and match the data exactly.

end: The end point's name. Must be a location name and match the data exactly.

start_time: The departure time in the format 'HH:MM'.

transport_type: The mode of transportation, must in ['walk', 'taxi', 'metro'].



(16) intercity_transport_select(start_city: str, end_city: str, intercity_type: str, earliest_leave_time: str = None):

Description: get the intercity transportation information between two cities. You need to call this function at least twice to get the transportation information between two locations for going and returning.

Parameters:

start_city: The start city name.

end_city: The end city name.

intercity_type: The type of intercity transportation, must in ['train', 'airplane'].

earliest_leave_time: The earliest leave time in the format 'HH:MM'.



(17) Results[index] Results[index].next_page()

Description: Get the result of the index or go to the next page of the result.

"""


if __name__ == "__main__":
    import random

    test_env = WorldEnv()
    test_env.transportation.goto(
        city="杭州",
        start="杭州东站",
        end="上海虹桥站",
        start_time="17:00",
        transport_type="metro",
    )

    def test_for_attractions(city_list):
        # test for attractions
        for city in city_list:
            print(f"Testing attractions in {city}...")
            keys = test_env(f"attractions_keys('{city}')")["data"]
            type_list = test_env(f"attractions_types('{city}')")["data"]
            for key, _ in keys:
                print(
                    test_env(f"attractions_select('{city}', '{key}', lambda x: True)")[
                        "data"
                    ]
                )
            original_data = None
            for type_ in type_list:
                original_data = test_env(
                    f"attractions_select('{city}', 'type', lambda x: x == '{type_}')"
                )["data"]
            name_list = original_data["name"].tolist()
            data_len = len(name_list)
            time_list = ["6:30", "12:00", "18:00", "23:00"]
            for i in range(3):
                index = random.randint(0, data_len - 1)
                print(
                    test_env(
                        f"attractions_id_is_open('{city}', {index}, '{random.choice(time_list)}')"
                    )["data"]
                )
                name = name_list[index]
                print(test_env(f"attractions_nearby('{city}', '{name}', 5, 2)")["data"])

    def test_for_accommodations(city_list):
        # test for accommodations
        for city in city_list:
            print(f"Testing accommodations in {city}...")
            keys = test_env(f"accommodations_keys('{city}')")["data"]
            for key, _ in keys:
                print(
                    test_env(
                        f"accommodations_select('{city}', '{key}', lambda x: True)"
                    )["data"]
                )
            original_data = test_env(
                f"accommodations_select('{city}', 'name', lambda x: True)"
            )["data"]
            name_list = original_data["name"].tolist()
            data_len = len(name_list)
            for i in range(3):
                index = random.randint(0, data_len - 1)
                name = name_list[index]
                print(
                    test_env(f"accommodations_nearby('{city}', '{name}', 5, 2)")["data"]
                )

    def test_for_restaurants(city_list):
        # test for restaurants
        for city in city_list:
            print(f"Testing restaurants in {city}...")
            keys = test_env(f"restaurants_keys('{city}')")["data"]
            cuisine_list = test_env(f"restaurants_cuisine('{city}')")["data"]
            for key, _ in keys:
                print(
                    test_env(f"restaurants_select('{city}', '{key}', lambda x: True)")[
                        "data"
                    ]
                )
            original_data = test_env(
                f"restaurants_select('{city}', 'name', lambda x: True)"
            )["data"]
            name_list = original_data["name"].tolist()
            data_len = len(name_list)
            time_list = ["6:30", "12:00", "18:00", "23:00"]
            for i in range(3):
                index = random.randint(0, data_len - 1)
                test_env.restaurants.id_is_open(city, index, random.choice(time_list))
                print(
                    test_env(
                        f"restaurants_id_is_open('{city}', {index}, '{random.choice(time_list)}')"
                    )["data"]
                )
                name = name_list[index]
                print(test_env(f"restaurants_nearby('{city}', '{name}', 5, 2)")["data"])
            food_list = ["烤鸭"]
            for food in food_list:
                print(food)
                print(
                    test_env(
                        f"restaurants_restaurants_with_recommended_food('{city}', '{food}')"
                    )["data"]
                )

    def test_for_goto(city_list):
        # test for goto
        for city in city_list:
            print(f"Testing goto in {city}...")
            name_list = test_env(
                f"attractions_select('{city}', 'name', lambda x: True)"
            )["data"]["name"].tolist()
            start = random.choice(name_list)
            end = random.choice(name_list)
            test_env.transportation.goto(city, start, end, "12:00", "walk")
            test_env.transportation.goto(city, start, end, "12:00", "taxi")
            test_env.transportation.goto(city, start, end, "12:00", "metro")
            print(test_env(f"goto('{city}', '{start}', '{end}', '12:00', 'walk')"))
            print(test_env(f"goto('{city}', '{start}', '{end}', '12:00', 'taxi')"))
            print(test_env(f"goto('{city}', '{start}', '{end}', '12:00', 'metro')"))

    def test_for_intercity_transport(city_list):
        # test for intercity transport
        for i in range(len(city_list)):
            for j in range(i + 1, len(city_list)):
                print(
                    test_env(
                        f"intercity_transport_select('{city_list[i]}', '{city_list[j]}', 'train')"
                    )["data"]
                )
                print(
                    test_env(
                        f"intercity_transport_select('{city_list[i]}', '{city_list[j]}', 'airplane')"
                    )["data"]
                )
                print(
                    test_env(
                        f"intercity_transport_select('{city_list[i]}', '{city_list[j]}', 'train', '12:00')"
                    )
                )

    def test_for_next_page():
        print(
            test_env("attractions_select('上海', 'type', lambda x: True)")["whole_data"]
        )
        print(test_env("attractions_select('上海', 'type', lambda x: True)"))
        print(test_env("next_page()"))
        print(test_env("next_page()"))

    def test_all():
        city_list = [
            "上海",
            "北京",
            "深圳",
            "广州",
            "重庆",
            "苏州",
            "成都",
            "杭州",
            "武汉",
            "南京",
        ]
        city_list = ["上海"]
        # 随机选取一个城市
        # city_list = random.sample(city_list, 1)
        test_for_attractions(city_list)
        test_for_accommodations(city_list)
        test_for_restaurants(city_list)
        test_for_goto(city_list)
        test_for_intercity_transport(city_list)
        test_for_next_page()

    test_all()