File size: 16,566 Bytes
dfe35ce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 |
# -*- coding: utf-8 -*-
import os
import sys
import pandas as pd
project_root_path = os.path.dirname(
os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
)
if project_root_path not in sys.path:
sys.path.append(project_root_path)
import json
from chinatravel.environment.world_env import WorldEnv
from chinatravel.evaluation.utils import Attractions
from chinatravel.symbol_verification.preference import evaluate_preference_py
env = WorldEnv()
attractions = Attractions()
goto = env.transportation.goto
city_dict = {
"北京": "beijing",
"上海": "shanghai",
"南京": "nanjing",
"苏州": "suzhou",
"杭州": "hangzhou",
"深圳": "shenzhen",
"成都": "chengdu",
"武汉": "wuhan",
"广州": "guangzhou",
"重庆": "chongqing",
}
def calc_time_delta(st_time, ed_time):
st_h, st_m = int(st_time.split(":")[0]), int(st_time.split(":")[1])
ed_h, ed_m = int(ed_time.split(":")[0]), int(ed_time.split(":")[1])
return (ed_m - st_m) + (ed_h - st_h) * 60
def convenient_transport(plan_json):
plan = plan_json["itinerary"]
time_cost = 0
transport_count = 0
for plan_of_day in plan:
for activity in plan_of_day["activities"]:
if "transports" in activity:
transport_count += 1
for transport in activity["transports"]:
time_cost += calc_time_delta(
transport["start_time"], transport["end_time"]
)
average_time_cost = time_cost / transport_count
return average_time_cost
def convenient_restaurant(plan_json):
plan = plan_json["itinerary"]
restaurant_count = 0
time_cost = 0
for plan_of_day in plan:
for activity in plan_of_day["activities"]:
if activity["type"] in ["breakfast", "lunch", "dinner"]:
restaurant_count += 1
for transport in activity["transports"]:
time_cost += calc_time_delta(
transport["start_time"], transport["end_time"]
)
if restaurant_count == 0:
return -1
average_time_cost = time_cost / restaurant_count
return average_time_cost
def near_poi(plan_json, poi_list):
poi_count = len(poi_list)
if poi_count == 0:
return -1
plan = plan_json["itinerary"]
if len(plan) == 1:
return -1
city = plan_json["target_city"]
accommodation_name = ""
for plan_of_day in plan:
for activity in plan_of_day["activities"]:
if activity["type"] == "accommodation":
accommodation_name = activity["position"]
break
dist_cost = 0
for poi in poi_list:
# print("city", city, "accommodation_name", accommodation_name, "poi", poi)
dist_cost += goto(
city, accommodation_name, poi, start_time="00:00", transport_type="walk"
)[0]["distance"]
average_dist_cost = dist_cost / poi_count
return average_dist_cost
def less_walk(plan_json):
plan = plan_json["itinerary"]
walk_distance = 0
activity_count = 0
for plan_of_day in plan:
for activity in plan_of_day["activities"]:
if "transports" in activity:
for transport in activity["transports"]:
if transport["mode"] == "walk":
walk_distance += transport["distance"]
activity_count += 1
# average_walk_distance = walk_distance / activity_count
return walk_distance
def meal_cost_ratio(plan_json):
plan = plan_json["itinerary"]
meal_cost = 0
for plan_of_day in plan:
for activity in plan_of_day["activities"]:
if activity["type"] in ["breakfast", "lunch", "dinner"]:
meal_cost += activity["cost"]
return meal_cost / total_cost(plan_json)
def accommodation_cost_ratio(plan_json):
plan = plan_json["itinerary"]
accommodation_cost = 0
for plan_of_day in plan:
for activity in plan_of_day["activities"]:
if activity["type"] == "accommodation":
accommodation_cost += activity["cost"]
return accommodation_cost / total_cost(plan_json)
def attraction_cost_ratio(plan_json):
plan = plan_json["itinerary"]
attraction_cost = 0
for plan_of_day in plan:
for activity in plan_of_day["activities"]:
if activity["type"] == "attraction":
attraction_cost += activity["cost"]
return attraction_cost / total_cost(plan_json)
def total_cost(plan_json):
plan = plan_json["itinerary"]
_total_cost = 0
for plan_of_day in plan:
for activity in plan_of_day["activities"]:
_total_cost += activity["cost"]
for transport in activity["transports"]:
_total_cost += transport["cost"]
return _total_cost
def attraction_satisfaction(plan_json):
plan = plan_json["itinerary"]
city = plan_json["target_city"]
recommend_time_list = []
actual_time_list = []
# datapath=os.path.dirname(__file__) + "/eval_annotation/attractions/{}/attractions_tag.csv".format(city_dict[city])
# ood_attractions_dataframe = pd.read_csv(datapath)
# datapath=os.path.dirname(__file__) + "/eval_annotation/attractions/{}/attractions_tag.csv".format(city_dict[city])
# ood_attractions_dataframe = pd.read_csv(datapath)
for plan_of_day in plan:
for activity in plan_of_day["activities"]:
if activity["type"] == "attraction":
attraction_name = activity["position"]
attrction_info = attractions.select(
city, key="name", func=lambda x: x == attraction_name
).iloc[0]
# attrction_info = ood_attractions_dataframe[ood_attractions_dataframe["name"] == attraction_name].iloc[0]
recommend_time = (attrction_info["recommendmintime"]) * 60
actual_time = calc_time_delta(
activity["start_time"], activity["end_time"]
)
recommend_time_list.append(recommend_time)
actual_time_list.append(actual_time)
if len(recommend_time_list) == 0:
return -1
# marco = sum(recommend_time_list) / sum(actual_time_list)
micro = sum(
[
recommend_time_list[i] / actual_time_list[i]
for i in range(len(recommend_time_list))
]
) / len(recommend_time_list)
return micro
def attraction_count(plan_json):
plan = plan_json["itinerary"]
day_num = len(plan)
attraction_count = 0
for plan_of_day in plan:
for activity in plan_of_day["activities"]:
if activity["type"] == "attraction":
attraction_count += 1
average_attraction_count = attraction_count / day_num
return average_attraction_count
def indoor_attraction_ratio(plan_json):
plan = plan_json["itinerary"]
attraction_count = 0
indoor_attraction_count = 0
for plan_of_day in plan:
for activity in plan_of_day["activities"]:
if activity["type"] == "attraction":
attraction_count += 1
attraction_name = activity["position"]
city = plan_json["target_city"]
attraction_info = attractions.select(
city, key="name", func=lambda x: x == attraction_name
).iloc[0]
if attraction_info["indoor"] == 1:
indoor_attraction_count += 1
if attraction_count == 0:
return -1
return indoor_attraction_count / attraction_count
def popular_attraction_ratio(plan_json):
plan = plan_json["itinerary"]
attraction_count = 0
popular_score_sum = 0
for plan_of_day in plan:
for activity in plan_of_day["activities"]:
if activity["type"] == "attraction":
attraction_count += 1
attraction_name = activity["position"]
city = plan_json["target_city"]
attraction_info = attractions.select(
city, key="name", func=lambda x: x == attraction_name
).iloc[0]
popular_score_sum += attraction_info["popularity"]
if attraction_count == 0:
return -1
return popular_score_sum / attraction_count
func_list = [
convenient_transport,
convenient_restaurant,
near_poi,
less_walk,
meal_cost_ratio,
accommodation_cost_ratio,
attraction_cost_ratio,
total_cost,
attraction_satisfaction,
attraction_count,
indoor_attraction_ratio,
popular_attraction_ratio,
]
def _evaluate_preference(symbolic_input, plan_json):
result = {}
poi_list_str = ""
preference_list = symbolic_input["preference_en"]
for preference in preference_list:
if "close to" in preference:
poi_list_str = preference.split("{")[1].split("}")[0]
break
poi_list = poi_list_str.replace(",", ",").split(",")
poi_list = (
[poi.strip().strip("'").strip('"') for poi in poi_list]
if poi_list_str != ""
else []
)
for func in func_list:
if func == near_poi:
result[func.__name__] = func(plan_json, poi_list)
else:
result[func.__name__] = func(plan_json)
return result
def evaluate_preference(query_index, query_data, result_data, commonsense_pass):
result = []
for i in range(len(query_index)):
if query_index[i] not in commonsense_pass:
result.append(
{"data_id": query_index[i]} | {func.__name__: -1 for func in func_list}
)
continue
symbolic_input = query_data[query_index[i]]
plan_json = result_data[query_index[i]]
# print("symbolic_input", symbolic_input, "plan_json", plan_json)
result.append(
{"data_id": query_index[i]}
| _evaluate_preference(symbolic_input, plan_json)
)
result_df = pd.DataFrame(result)
return result_df
def evaluate_preference_v2(query_index, query_data, result_data, pass_id):
result = []
for i in range(len(query_index)):
if query_index[i] not in pass_id:
result.append(
{"data_id": query_index[i], "concept": -1}
)
continue
evaluate_preference_py
symbolic_input = query_data[query_index[i]]
plan_json = result_data[query_index[i]]
# print("symbolic_input", symbolic_input, "plan_json", plan_json)
if isinstance(symbolic_input["preference_py"], list):
pre_py = symbolic_input["preference_py"][0]
else:
pre_py = symbolic_input["preference_py"]
index = pre_py.find("\n")
concept = pre_py[:index]
op = concept.split(" ")[0]
op_concept = concept.split(" ")[1]
code = pre_py[index + 1 :]
res = evaluate_preference_py([(op, op_concept, code)], plan_json)[0]
result.append(
{"data_id": query_index[i], "concept": res}
)
result_df = pd.DataFrame(result)
return result_df
def test():
test_json_txt = """
{"people_number":1,"start_city":"深圳","target_city":"南京","itinerary":[{"day":1,"activities":[{"start_time":"06:27","end_time":"15:15","start":"深圳北站","end":"南京南站","TrainID":"D376","type":"train","transports":[],"cost":694.1,"tickets":1},{"position":"中山陵景区","type":"attraction","transports":[{"start":"南京南站","end":"南京南站-地铁站","mode":"walk","start_time":"15:15","end_time":"15:18","cost":0,"distance":0.29},{"start":"南京南站-地铁站","end":"钟灵街-地铁站","mode":"metro","start_time":"15:18","end_time":"15:38","cost":4,"distance":10.21,"tickets":1},{"start":"钟灵街-地铁站","end":"中山陵景区","mode":"walk","start_time":"15:38","end_time":"16:07","cost":0,"distance":2.47}],"cost":0,"start_time":"16:07","end_time":"17:00"},{"position":"朱氏梅花糕","type":"dinner","transports":[{"start":"中山陵景区","end":"钟灵街-地铁站","mode":"walk","start_time":"17:00","end_time":"17:29","cost":0,"distance":2.47},{"start":"钟灵街-地铁站","end":"云南路-地铁站","mode":"metro","start_time":"17:29","end_time":"17:47","cost":4,"distance":9.22,"tickets":1},{"start":"云南路-地铁站","end":"朱氏梅花糕","mode":"walk","start_time":"17:47","end_time":"17:52","cost":0,"distance":0.5}],"cost":6,"start_time":"17:52","end_time":"19:22"},{"position":"行政院","type":"attraction","transports":[{"start":"朱氏梅花糕","end":"云南路-地铁站","mode":"walk","start_time":"19:22","end_time":"19:27","cost":0,"distance":0.5},{"start":"云南路-地铁站","end":"九华山-地铁站","mode":"metro","start_time":"19:27","end_time":"19:32","cost":2,"distance":2.96,"tickets":1},{"start":"九华山-地铁站","end":"行政院","mode":"walk","start_time":"19:32","end_time":"19:39","cost":0,"distance":0.62}],"cost":0,"start_time":"19:39","end_time":"21:09"},{"position":"南京玄武饭店","type":"accommodation","room_type":1,"transports":[{"start":"行政院","end":"九华山-地铁站","mode":"walk","start_time":"21:09","end_time":"21:16","cost":0,"distance":0.62},{"start":"九华山-地铁站","end":"玄武门-地铁站","mode":"metro","start_time":"21:16","end_time":"21:20","cost":2,"distance":2.5,"tickets":1},{"start":"玄武门-地铁站","end":"南京玄武饭店","mode":"walk","start_time":"21:20","end_time":"21:21","cost":0,"distance":0.1}],"cost":556.0,"start_time":"21:21","end_time":"24:00","rooms":1}]},{"day":2,"activities":[{"position":"南京玄武饭店","type":"breakfast","transports":[],"cost":0,"start_time":"08:00","end_time":"08:30"},{"position":"雨花门","type":"attraction","transports":[{"start":"南京玄武饭店","end":"玄武门-地铁站","mode":"walk","start_time":"08:30","end_time":"08:31","cost":0,"distance":0.1},{"start":"玄武门-地铁站","end":"武定门-地铁站","mode":"metro","start_time":"08:31","end_time":"08:43","cost":3,"distance":6.32,"tickets":1},{"start":"武定门-地铁站","end":"雨花门","mode":"walk","start_time":"08:43","end_time":"08:48","cost":0,"distance":0.42}],"cost":0,"start_time":"08:48","end_time":"10:18"},{"position":"江心洲大桥","type":"attraction","transports":[{"start":"雨花门","end":"武定门-地铁站","mode":"walk","start_time":"10:18","end_time":"10:23","cost":0,"distance":0.42},{"start":"武定门-地铁站","end":"雨山路-地铁 站","mode":"metro","start_time":"10:23","end_time":"10:57","cost":5,"distance":17.3,"tickets":1},{"start":"雨山路-地铁站","end":"江心洲大桥","mode":"walk","start_time":"10:57","end_time":"11:31","cost":0,"distance":2.86}],"cost":0,"start_time":"11:31","end_time":"13:01"},{"position":"胡小石纪念馆","type":"attraction","transports":[{"start":"江心洲大桥","end":"雨山路-地铁站","mode":"walk","start_time":"13:01","end_time":"13:35","cost":0,"distance":2.86},{"start":"雨山路-地铁站","end":"文德路-地铁站","mode":"metro","start_time":"13:35","end_time":"13:38","cost":2,"distance":1.8,"tickets":1},{"start":"文德路-地铁站","end":"胡小石纪念馆","mode":"walk","start_time":"13:38","end_time":"13:45","cost":0,"distance":0.61}],"cost":0,"start_time":"13:45","end_time":"15:15"},{"start_time":"17:00","end_time":"14:52","start":"南京站","end":"深圳站","TrainID":"K36","type":"train","transports":[{"start":"胡小石纪念馆","end":"文德路-地铁站","mode":"walk","start_time":"15:15","end_time":"15:22","cost":0,"distance":0.61},{"start":"文德路-地铁站","end":"南京站-地铁站","mode":"metro","start_time":"15:22","end_time":"15:54","cost":5,"distance":16.42,"tickets":1},{"start":"南京站-地铁站","end":"南京站","mode":"walk","start_time":"15:54","end_time":"15:56","cost":0,"distance":0.25}],"cost":462.73,"tickets":1}]}]}
"""
test_symbolic_input = {"preference_en": ["close to {中山陵景区,行政院}"]}
plan_json = json.loads(test_json_txt)
result = _evaluate_preference(test_symbolic_input, plan_json)
print(result)
if __name__ == "__main__":
test()
|