File size: 7,855 Bytes
dfe35ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import os
import jsonschema
import pandas as pd
from jsonschema import validate
from chinatravel.data.load_datasets import load_query
from chinatravel.evaluation.utils import load_json_file
from chinatravel.symbol_verification.commonsense_constraint import (
    Is_time_correct,
    Is_space_correct,
    Is_hotels_correct,
    Is_transport_correct,
    Is_attractions_correct,
    Is_restaurants_correct,
    Is_intercity_transport_correct,
)
from chinatravel.symbol_verification.hard_constraint import evaluate_constraints_py

os.environ["HF_DATASETS_OFFLINE"] = "1"


def load_result(result_dir, query_index):
    result = {}
    matched_uid = []
    unmatched_uid = []
    for query_id in query_index:
        result_file = os.path.join(result_dir, f"{query_id}.json")
        # print(f"Loading result for {query_id} from {result_file}")
        try:
            if os.path.exists(result_file):
                result[query_id] = load_json_file(result_file)
                matched_uid.append(query_id)
            else:
                result[query_id] = {}
                unmatched_uid.append(query_id)
        except Exception:
            result[query_id] = {}
            unmatched_uid.append(query_id)
    return result, matched_uid, unmatched_uid


def validate_json(json_data, schema):
    try:
        validate(instance=json_data, schema=schema)
        return True
    except jsonschema.exceptions.ValidationError as e:
        return False


def evaluate_schema_constraints(data_index, plan_json_dict, schema, result):

    total_correct = 0
    result_agg = pd.DataFrame(columns=["data_id", "schema"])
    result_agg["data_id"] = data_index

    pass_id = []

    total = len(data_index)
    for ii, idx in enumerate(data_index):
        plan_json = plan_json_dict[idx]
        succ_flag = 0
        try:
            if validate_json(plan_json, schema):
                succ_flag = 1
                pass_id.append(idx)
        except Exception as e:
            pass
        result_agg.loc[ii, "schema"] = succ_flag
        total_correct += succ_flag
        yield {
            "stage": "schema",
            "progress": (ii + 1) / total * 100,
        }
    total_count = len(data_index)
    result["DR"] = total_correct / total_count * 100
    result["S_pass_id"] = pass_id


"""
Constraints:
Available
1. Intercity transport information exsits and is objective: ID, time, startpos and endpos need to be correct.
2. Attractions
3. Hotels
4. Restaurants
5. transportation
6. Times
7. space
"""


def evaluate_commonsense_constraints(
    data_index, symbolic_input_dict, plan_json_dict, result
):
    func_list = [
        Is_intercity_transport_correct,
        Is_attractions_correct,
        Is_hotels_correct,
        Is_restaurants_correct,
        Is_transport_correct,
        Is_time_correct,
        Is_space_correct,
    ]
    result_agg = pd.DataFrame(columns=["data_id"])
    result_agg["data_id"] = data_index
    individual_succ = 0
    pass_id = []
    total = len(data_index)
    for ii, idx in enumerate(data_index):
        symbolic_input, plan_json = symbolic_input_dict[idx], plan_json_dict[idx]
        try:
            for func in func_list:
                table_res, _ = func(symbolic_input, plan_json, verbose=False)
                for colum_i in table_res.columns:
                    if colum_i not in result_agg.columns:
                        result_agg[colum_i] = 0
                    result_agg.loc[ii, colum_i] = table_res[colum_i].loc[0]
            if result_agg.loc[ii][1:].sum() == 0:
                individual_succ += 1
                pass_id.append(idx)
        except Exception as message:
            pass
        yield {
            "stage": "commonsense",
            "progress": (ii + 1) / total * 100,
        }
    total_count = len(data_index)
    micro_accuracy = 1.0 - result_agg.drop("data_id", axis=1).sum().sum() / (
        total_count * (result_agg.shape[1] - 1)
    )
    macro_accuracy = individual_succ / total_count
    result["EPR_micro"] = micro_accuracy * 100
    result["EPR_macro"] = macro_accuracy * 100
    result["E_pass_id"] = pass_id


def evaluate_hard_constraints_v2(
    data_index, symbolic_input_dict, plan_json_dict, env_pass_id, result: dict
):
    max_logic_num = 0
    for idx in data_index:
        max_logic_num = max(
            max_logic_num, len(symbolic_input_dict[idx]["hard_logic_py"])
        )
    columns = ["data_id"]
    for i in range(max_logic_num):
        columns.append(f"logic_py_{i}")
    result_agg = pd.DataFrame(columns=columns)
    for col_i in result_agg.columns[1:]:
        result_agg[col_i] = 0
    macro_count, macro_succ_count = 0, 0
    micro_count, micro_succ_count = 0, 0
    conditional_micro_succ_count, conditional_macro_succ_count = 0, 0
    results = []
    passed_id = []
    total = len(data_index)
    for ii, idx in enumerate(data_index):
        symbolic_input, plan_json = symbolic_input_dict[idx], plan_json_dict[idx]
        result_ii = evaluate_constraints_py(
            symbolic_input["hard_logic_py"], plan_json, verbose=False
        )
        results.append(result_ii)
        dict_ii = {}
        succ_c_sum = 0
        for logic_i in range(len(symbolic_input["hard_logic_py"])):
            dict_ii[f"logic_py_{logic_i}"] = int(result_ii[logic_i])
            succ_c_sum += int(result_ii[logic_i])
        macro_count += 1
        macro_succ_count += succ_c_sum == len(dict_ii)
        micro_count += len(dict_ii)
        micro_succ_count += succ_c_sum
        if idx in env_pass_id:
            conditional_micro_succ_count += succ_c_sum
            conditional_macro_succ_count += succ_c_sum == len(dict_ii)
        if succ_c_sum == len(dict_ii):
            passed_id.append(idx)
        dict_ii["data_id"] = idx
        result_agg.loc[ii] = pd.Series(dict_ii)
        yield {
            "stage": "logic",
            "progress": (ii + 1) / total * 100,
        }
    macro = macro_succ_count / macro_count
    micro = micro_succ_count / micro_count
    c_marco = conditional_macro_succ_count / macro_count
    c_micro = conditional_micro_succ_count / micro_count
    result["LPR_micro"] = micro * 100
    result["LPR_macro"] = macro * 100
    result["C-LPR"] = c_micro * 100
    result["L_pass_id"] = passed_id


def evaluate(args, result):
    eval_result = {}

    query_index, query_data = load_query(args)
    result_data, matched_uid, unmatched_uid = load_result(
        args.result_dir, query_index=query_index
    )
    eval_result["matched_uid"] = matched_uid
    eval_result["unmatched_uid"] = unmatched_uid

    schema_file_path = "chinatravel/evaluation/output_schema.json"
    schema = load_json_file(schema_file_path)
    # schema pass rate
    yield from evaluate_schema_constraints(
        query_index, result_data, schema=schema, result=eval_result
    )

    # commonsense pass rate
    yield from evaluate_commonsense_constraints(
        query_index, query_data, result_data, result=eval_result
    )

    # hard logic pass rate
    yield from evaluate_hard_constraints_v2(
        query_index,
        query_data,
        result_data,
        env_pass_id=eval_result.get("E_pass_id", []),
        result=eval_result,
    )

    # all pass rate
    # all_pass_id = list(
    #     set(schema_pass_id) & set(commonsense_pass_id) & set(logi_pass_id)
    # )
    all_pass_id = set(query_index)  # Initialize with all query IDs
    for key in eval_result:
        if "pass_id" in key:
            all_pass_id.intersection_update(set(eval_result[key]))
    eval_result["FPR"] = len(all_pass_id) / len(query_index) * 100
    # del pass_id
    del_keys = [key for key in eval_result if "pass_id" in key]
    for key in del_keys:
        del eval_result[key]
    result = eval_result
    yield {
        "stage": "final",
        "progress": 100,
        "result": result,
    }