Spaces:
Sleeping
Sleeping
import tensorflow as tf | |
import numpy as np | |
import matplotlib.pyplot as plt | |
# Load Fashion MNIST dataset (built-in) | |
fashion_mnist = tf.keras.datasets.fashion_mnist | |
(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data() | |
# Class names in the dataset | |
class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', | |
'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot'] | |
# Normalize pixel values to [0,1] | |
train_images = train_images / 255.0 | |
test_images = test_images / 255.0 | |
# Build a simple neural network model | |
model = tf.keras.Sequential([ | |
tf.keras.layers.Flatten(input_shape=(28, 28)), | |
tf.keras.layers.Dense(128, activation='relu'), | |
tf.keras.layers.Dense(10) | |
]) | |
# Compile the model | |
model.compile(optimizer='adam', | |
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), | |
metrics=['accuracy']) | |
# Train the model | |
model.fit(train_images, train_labels, epochs=10) | |
# Evaluate on test data | |
test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2) | |
print('\nTest accuracy:', test_acc) | |
# Save the model | |
model.save('fashion_mnist_model.h5') | |
# Optional: Test prediction and plot one image | |
probability_model = tf.keras.Sequential([model, | |
tf.keras.layers.Softmax()]) | |
predictions = probability_model.predict(test_images) | |
print("Predicted label for first test image:", class_names[np.argmax(predictions[0])]) | |
import matplotlib.pyplot as plt | |
plt.figure() | |
plt.imshow(test_images[0], cmap=plt.cm.binary) | |
plt.title(class_names[test_labels[0]]) | |
plt.show() | |