Spaces:
Sleeping
Sleeping
Gabe Rogan
commited on
Commit
·
acd7a28
1
Parent(s):
fc1c46b
Add object detection
Browse files
app.py
CHANGED
@@ -1,7 +1,55 @@
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
|
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import pipeline
|
2 |
import gradio as gr
|
3 |
+
import io
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
from PIL import Image
|
6 |
+
from random import choice
|
7 |
|
8 |
+
COLORS = ["#ff7f7f", "#ff7fbf", "#ff7fff", "#bf7fff",
|
9 |
+
"#7f7fff", "#7fbfff", "#7fffff", "#7fffbf",
|
10 |
+
"#7fff7f", "#bfff7f", "#ffff7f", "#ffbf7f"]
|
11 |
|
12 |
+
def get_figure(in_pil_img, in_results):
|
13 |
+
plt.figure(figsize=(16, 10))
|
14 |
+
plt.imshow(in_pil_img)
|
15 |
+
ax = plt.gca()
|
16 |
+
|
17 |
+
for prediction in in_results:
|
18 |
+
selected_color = choice(COLORS)
|
19 |
+
|
20 |
+
x, y = prediction['box']['xmin'], prediction['box']['ymin'],
|
21 |
+
w, h = prediction['box']['xmax'] - prediction['box']['xmin'], prediction['box']['ymax'] - prediction['box']['ymin']
|
22 |
+
|
23 |
+
ax.add_patch(plt.Rectangle((x, y), w, h, fill=False, color=selected_color, linewidth=3))
|
24 |
+
ax.text(x, y - 3, f"{prediction['label']}: {round(prediction['score']*100, 1)}%", fontdict={
|
25 |
+
"family" : "Arial",
|
26 |
+
"size" : 20,
|
27 |
+
"color" : selected_color,
|
28 |
+
"weight" : "bold",
|
29 |
+
})
|
30 |
+
|
31 |
+
plt.axis("off")
|
32 |
+
|
33 |
+
return plt.gcf()
|
34 |
+
|
35 |
+
def classify(in_pil_img):
|
36 |
+
detector = pipeline("object-detection", "facebook/detr-resnet-50")
|
37 |
+
results = detector(in_pil_img, { "threshold": 0.9 })
|
38 |
+
|
39 |
+
figure = get_figure(in_pil_img, results)
|
40 |
+
|
41 |
+
buf = io.BytesIO()
|
42 |
+
figure.savefig(buf, bbox_inches='tight')
|
43 |
+
buf.seek(0)
|
44 |
+
output_pil_img = Image.open(buf)
|
45 |
+
|
46 |
+
return output_pil_img
|
47 |
+
|
48 |
+
demo = gr.Interface(classify,
|
49 |
+
inputs=gr.Image(type="pil"),
|
50 |
+
outputs=gr.Image(type="pil"),
|
51 |
+
title="Object Detection",
|
52 |
+
examples=["https://iili.io/JgN38oQ.jpg", "https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/cats.jpg"]
|
53 |
+
)
|
54 |
+
|
55 |
+
demo.launch()
|