File size: 8,920 Bytes
69591a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import albumentations as A
import nntools.dataset as D
import numpy as np
from albumentations.pytorch import ToTensorV2
from lightning import LightningDataModule
from sklearn.model_selection import train_test_split
from torch.utils.data import DataLoader
from skimage.measure import label, regionprops
from skimage.morphology import skeletonize, dilation
from skimage.segmentation import expand_labels
import torch
from nntools.dataset.composer import CacheBullet


@D.nntools_wrapper
def convert_mask(mask):
    output = np.zeros(mask.shape[:2], dtype=np.uint8)
    output[mask[:, :, 0] > 200] = 1
    output[mask[:, :, 1] > 200] = 2
    binary_mask = output > 0
    skeleton = skeletonize(binary_mask) * output
    output = expand_labels(skeleton, 3)
    output = np.clip(output, 0, 2)
    return {"mask": output}


@D.nntools_wrapper
def extract_bbox(mask):
    binary_mask = mask > 0
    labelled = label(binary_mask)
    props = regionprops(labelled, intensity_image=mask)
    skeleton = skeletonize(binary_mask) * mask
    mask = dilation(skeleton, np.ones((3, 3)))
    bboxes = []
    masks = []
    # We want the XYXY format
    for prop in props:
        minr, minc, maxr, maxc = prop.bbox
        bboxes.append([minc, minr, maxc, maxr])
        masks.append((labelled == prop.label).astype(np.uint8))
    if not masks:
        masks = np.zeros_like(mask)[np.newaxis, :, :]
    masks = np.array(masks)
    masks = np.moveaxis(masks, 0, -1)

    return {
        "bboxes": np.array(bboxes),
        "mask": masks,
        "fiber_ids": np.array([p.label for p in props]),
    }


class FiberDatamodule(LightningDataModule):
    def __init__(

        self,

        root_img,

        crop_size=(256, 256),

        shape=1024,

        batch_size=32,

        num_workers=8,

        use_bbox=False,

        **kwargs,

    ):
        self.shape = shape
        self.root_img = str(root_img)
        self.crop_size = crop_size
        self.batch_size = batch_size
        self.num_workers = num_workers
        self.kwargs = kwargs
        self.use_bbox = use_bbox

        super().__init__()

    def setup(self, *args, **kwargs):
        def _get_dataset(version):
            dataset = D.MultiImageDataset(
                {
                    "image": f"{self.root_img}/{version}/images/",
                    "mask": f"{self.root_img}/{version}/annotations/",
                },
                shape=(self.shape, self.shape),
                use_cache=self.kwargs.get("use_cache", False),
                cache_option=self.kwargs.get("cache_option", None),
            )  # type: ignore
            dataset.img_filepath["image"] = np.asarray(  # type: ignore
                sorted(
                    list(dataset.img_filepath["image"]),
                    key=lambda x: (x.parent.stem, x.stem),
                )
            )
            dataset.img_filepath["mask"] = np.asarray(  # type: ignore
                sorted(
                    list(dataset.img_filepath["mask"]),
                    key=lambda x: (x.parent.stem, x.stem),
                )
            )
            dataset.composer = D.Composition()
            dataset.composer << convert_mask  # type: ignore
            if self.use_bbox:
                dataset.composer << extract_bbox

            return dataset

        self.train = _get_dataset("train")
        self.val = _get_dataset("train")
        self.test = _get_dataset("test")
        self.train.composer << CacheBullet()
        self.val.use_cache = False
        self.test.use_cache = False

        stratify = []
        for f in self.train.img_filepath["image"]:
            if "tile" in f.stem:
                stratify.append(int(f.parent.stem))
            else:
                stratify.append(25)
        train_idx, val_idx = train_test_split(
            np.arange(len(self.train)),  # type: ignore
            stratify=stratify,
            test_size=0.2,
            random_state=42,
        )
        self.train.subset(train_idx)
        self.val.subset(val_idx)

        self.train.composer.add(*self.get_train_composer())
        self.val.composer.add(*self.cast_operators())
        self.test.composer.add(*self.cast_operators())

    def get_train_composer(self):
        transforms = []
        if self.crop_size is not None:
            transforms.append(
                A.CropNonEmptyMaskIfExists(
                    width=self.crop_size[0], height=self.crop_size[1]
                ),
            )
        return [
            A.Compose(
                transforms
                + [
                    A.HorizontalFlip(),
                    A.VerticalFlip(),
                    A.Affine(),
                    A.ElasticTransform(),
                    A.RandomRotate90(),
                    A.OneOf(
                        [
                            A.RandomBrightnessContrast(
                                brightness_limit=(-0.2, 0.1),
                                contrast_limit=(-0.2, 0.1),
                                p=0.5,
                            ),
                            A.HueSaturationValue(
                                hue_shift_limit=(-5, 5),
                                sat_shift_limit=(-20, 20),
                                val_shift_limit=(-20, 20),
                                p=0.5,
                            ),
                        ]
                    ),
                    A.GaussNoise(std_range=(0.0, 0.1), p=0.5),
                ],
                bbox_params=A.BboxParams(
                    format="pascal_voc", label_fields=["fiber_ids"], min_visibility=0.95
                )
                if self.use_bbox
                else None,
            ),
            *self.cast_operators(),
        ]

    def cast_operators(self):
        return [
            A.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225))
            if not self.use_bbox
            else A.Normalize(
                mean=(
                    0.0,
                    0.0,
                    0.0,
                ),
                std=(1.0, 1.0, 1.0),
                max_pixel_value=255,
            ),
            ToTensorV2(),
        ]

    def train_dataloader(self):
        if self.use_bbox:
            return DataLoader(
                self.train,
                batch_size=self.batch_size,
                shuffle=True,
                num_workers=self.num_workers,
                pin_memory=True,
                persistent_workers=True,
                collate_fn=bbox_collate_fn,
            )

        else:
            return DataLoader(
                self.train,
                batch_size=self.batch_size,
                shuffle=True,
                num_workers=self.num_workers,
                pin_memory=True,
                persistent_workers=True,
            )

    def val_dataloader(self):
        if self.use_bbox:
            return DataLoader(
                self.val,
                batch_size=self.batch_size,
                shuffle=False,
                num_workers=self.num_workers,
                pin_memory=True,
                persistent_workers=True,
                collate_fn=bbox_collate_fn,
            )
        return DataLoader(
            self.val,
            batch_size=self.batch_size,
            shuffle=False,
            num_workers=self.num_workers,
        )

    def test_dataloader(self):
        if self.use_bbox:
            return DataLoader(
                self.test,
                batch_size=self.batch_size,
                shuffle=False,
                num_workers=self.num_workers,
                pin_memory=True,
                persistent_workers=True,
                collate_fn=bbox_collate_fn,
            )
        return DataLoader(
            self.test,
            batch_size=self.batch_size,
            shuffle=False,
            num_workers=self.num_workers,
        )


def bbox_collate_fn(batch):
    images = []
    targets = []

    for b in batch:
        target = dict()

        target["boxes"] = torch.from_numpy(b["bboxes"])
        if target["boxes"].shape[0] == 0:
            target["boxes"] = torch.zeros((0, 4), dtype=torch.float32)
        images.append(b["image"])
        target["boxes"] = torch.from_numpy(b["bboxes"])
        target["masks"] = b["mask"].permute(2, 0, 1)
        if target["boxes"].shape[0] == 0:
            target["labels"] = torch.zeros(1, dtype=torch.int64)
        else:
            target["labels"] = torch.ones_like(target["boxes"][:, 0], dtype=torch.int64)

        targets.append(target)

    return {
        "image": torch.stack(images),
        "targets": targets,
    }