File size: 15,873 Bytes
69591a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 |
import streamlit as st
from bokeh.plotting import figure
from bokeh.layouts import gridplot
from streamlit_bokeh import streamlit_bokeh
from dnafiber.ui.utils import (
get_image,
get_multifile_image,
get_resized_image,
bokeh_imshow,
pad_image_to_croppable,
numpy_to_base64_png,
)
from dnafiber.deployment import MODELS_ZOO
from dnafiber.ui.inference import ui_inference, get_model
from skimage.util import view_as_blocks
import cv2
import math
from bokeh.models import (
Range1d,
HoverTool,
)
import streamlit_image_coordinates
from catppuccin import PALETTE
import numpy as np
import torch
from skimage.segmentation import expand_labels
import pandas as pd
st.set_page_config(
layout="wide",
page_icon=":microscope:",
)
st.title("Viewer")
@st.cache_resource
def display_prediction(_prediction, _image, image_id=None):
max_width = 2048
image = _image
if image.max() > 25:
image = cv2.normalize(image, None, 0, 255, cv2.NORM_MINMAX, dtype=cv2.CV_8U)
scale = 1
# Resize the image to max_width
if image.shape[1] > max_width:
scale = max_width / image.shape[1]
image = cv2.resize(
image,
None,
fx=scale,
fy=scale,
interpolation=cv2.INTER_LINEAR,
)
h, w = image.shape[:2]
labels_maps = np.zeros((h, w), dtype=np.uint8)
for i, region in enumerate(_prediction):
x, y, w, h = region.scaled_coordinates(scale)
data = cv2.resize(
expand_labels(region.data, 1),
None,
fx=scale,
fy=scale,
interpolation=cv2.INTER_NEAREST,
)
labels_maps[
y : y + data.shape[0],
x : x + data.shape[1],
] = data
p1 = figure(
width=600,
x_range=Range1d(-image.shape[1] / 8, image.shape[1] * 1.125, bounds="auto"),
y_range=Range1d(image.shape[0] * 1.125, -image.shape[0] / 8, bounds="auto"),
title=f"Detected fibers: {len(_prediction)}",
tools="pan,wheel_zoom,box_zoom,reset",
active_scroll="wheel_zoom",
)
p1.image(
image=[labels_maps],
x=0,
y=0,
dw=labels_maps.shape[1],
dh=labels_maps.shape[0],
palette=["black", st.session_state["color1"], st.session_state["color2"]]
if np.max(labels_maps) > 0
else ["black"],
)
p2 = figure(
x_range=p1.x_range,
y_range=p1.y_range,
width=600,
tools="pan,wheel_zoom,box_zoom,reset",
active_scroll="wheel_zoom",
)
bokeh_imshow(p2, image)
colors = [c.hex for c in PALETTE.latte.colors][:14]
data_source = dict(
x=[],
y=[],
width=[],
height=[],
color=[],
firstAnalog=[],
secondAnalog=[],
ratio=[],
fiber_id=[],
)
np.random.shuffle(colors)
for i, region in enumerate(_prediction):
color = colors[i % len(colors)]
x, y, w, h = region.scaled_coordinates(scale)
fiberId = region.fiber_id
data_source["x"].append((x + w / 2))
data_source["y"].append((y + h / 2))
data_source["width"].append(w)
data_source["height"].append(h)
data_source["color"].append(color)
r, g = region.counts
red_length = st.session_state["pixel_size"] * r / scale
green_length = st.session_state["pixel_size"] * g / scale
data_source["firstAnalog"].append(f"{red_length:.2f} µm")
data_source["secondAnalog"].append(f"{green_length:.2f} µm")
data_source["ratio"].append(f"{green_length / red_length:.2f}")
data_source["fiber_id"].append(fiberId)
rect1 = p1.rect(
x="x",
y="y",
width="width",
height="height",
source=data_source,
fill_color=None,
line_color="color",
)
rect2 = p2.rect(
x="x",
y="y",
width="width",
height="height",
source=data_source,
fill_color=None,
line_color="color",
)
hover = HoverTool(
tooltips=f'<b>Fiber ID: @fiber_id</b><br><p style="color:{st.session_state["color1"]};">@firstAnalog</p> <p style="color:{st.session_state["color2"]};">@secondAnalog</p><b> Ratio: @ratio</b>',
)
hover.renderers = [rect1, rect2]
hover.point_policy = "follow_mouse"
hover.attachment = "vertical"
p1.add_tools(hover)
p2.add_tools(hover)
p1.axis.visible = False
p2.axis.visible = False
fig = gridplot(
[[p2, p1]],
merge_tools=True,
sizing_mode="stretch_width",
toolbar_options=dict(logo=None, help=None),
)
return fig
@st.cache_data
def show_fibers(_prediction, _image, image_id=None):
data = dict(
fiber_id=[],
firstAnalog=[],
secondAnalog=[],
ratio=[],
fiber_type=[],
visualization=[],
)
for fiber in _prediction:
data["fiber_id"].append(fiber.fiber_id)
r, g = fiber.counts
red_length = st.session_state["pixel_size"] * r
green_length = st.session_state["pixel_size"] * g
data["firstAnalog"].append(f"{red_length:.3f} ")
data["secondAnalog"].append(f"{green_length:.3f} ")
data["ratio"].append(f"{green_length / red_length:.3f}")
data["fiber_type"].append(fiber.fiber_type)
x, y, w, h = fiber.bbox
visu = _image[y : y + h, x : x + w, :]
visu = cv2.normalize(visu, None, 0, 255, cv2.NORM_MINMAX, dtype=cv2.CV_8U)
data["visualization"].append(visu)
df = pd.DataFrame(data)
df = df.rename(
columns={
"firstAnalog": "First analog (µm)",
"secondAnalog": "Second analog (µm)",
"ratio": "Ratio",
"fiber_type": "Fiber type",
"fiber_id": "Fiber ID",
"visualization": "Visualization",
}
)
df["Visualization"] = df["Visualization"].apply(lambda x: numpy_to_base64_png(x))
return df
def start_inference():
image = st.session_state.image_inference
image = cv2.normalize(image, None, 0, 255, cv2.NORM_MINMAX, dtype=cv2.CV_8U)
if "ensemble" in st.session_state.model:
model = [
_ + "_finetuned" if "finetuned" in st.session_state.model else ""
for _ in MODELS_ZOO.values()
if _ != "ensemble"
]
else:
model = get_model(st.session_state.model)
prediction = ui_inference(
model,
image,
"cuda" if torch.cuda.is_available() else "cpu",
st.session_state.post_process,
st.session_state.image_id,
)
prediction = [
p
for p in prediction
if (p.fiber_type != "single") and p.fiber_type != "multiple"
]
tab_viewer, tab_fibers = st.tabs(["Viewer", "Fibers"])
with tab_fibers:
df = show_fibers(prediction, image, st.session_state.image_id)
event = st.dataframe(
df,
on_select="rerun",
selection_mode="multi-row",
use_container_width=True,
column_config={
"Visualization": st.column_config.ImageColumn(
"Visualization",
help="Visualization of the fiber",
)
},
)
rows = event["selection"]["rows"]
columns = df.columns[:-2]
df = df.iloc[rows][columns]
cols = st.columns(3)
with cols[0]:
copy_to_clipboard = st.button(
"Copy selected fibers to clipboard",
help="Copy the selected fibers to clipboard in CSV format.",
)
if copy_to_clipboard:
df.to_clipboard(index=False)
with cols[2]:
st.download_button(
"Download selected fibers",
data=df.to_csv(index=False).encode("utf-8"),
file_name=f"fibers_{st.session_state.image_id}.csv",
mime="text/csv",
)
with tab_viewer:
max_width = 2048
if image.shape[1] > max_width:
st.toast("Images are displayed at a lower resolution of 2048 pixel wide")
fig = display_prediction(prediction, image, st.session_state.image_id)
streamlit_bokeh(fig, use_container_width=True)
def on_session_start():
can_start = (
st.session_state.get("files_uploaded", None) is not None
and len(st.session_state.files_uploaded) > 0
)
if can_start:
return can_start
cldu_exists = (
st.session_state.get("files_uploaded_cldu", None) is not None
and len(st.session_state.files_uploaded_cldu) > 0
)
idu_exists = (
st.session_state.get("files_uploaded_idu", None) is not None
and len(st.session_state.files_uploaded_idu) > 0
)
if cldu_exists and idu_exists:
if len(st.session_state.get("files_uploaded_cldu")) != len(
st.session_state.get("files_uploaded_idu")
):
st.error("Please upload the same number of CldU and IdU files.")
return False
def create_display_files(files):
if files is None or len(files) == 0:
return "No files uploaded"
display_files = []
for file in files:
if isinstance(file, tuple):
if file[0] is None:
name = f"Second analog only {file[1].name}"
elif file[1] is None:
name = f"First analog only {file[0].name}"
else:
name = f"{file[0].name} and {file[1].name}"
display_files.append(name)
else:
display_files.append(file.name)
return display_files
if on_session_start():
files = st.session_state.files_uploaded
displayed_names = create_display_files(files)
selected_file = st.selectbox(
"Pick an image",
displayed_names,
index=0,
help="Select an image to view and analyze.",
)
# Find index of the selected file
index = displayed_names.index(selected_file)
file = files[index]
if isinstance(file, tuple):
file_id = file[0].file_id if file[0] is not None else file[1].file_id
if file[0] is None or file[1] is None:
missing = "First analog" if file[0] is None else "Second analog"
st.warning(
f"In this image, {missing} channel is missing. We assume the intended goal is to segment the DNA fibers without differentiation. \
Note the model may still predict two classes and try to compute a ratio; these informations can be ignored."
)
image = get_multifile_image(file)
else:
file_id = file.file_id
image = get_image(
file,
reverse_channel=st.session_state.get("reverse_channels", False),
id=file_id,
)
h, w = image.shape[:2]
with st.sidebar:
st.metric(
"Pixel size (µm)",
st.session_state.get("pixel_size", 0.13),
)
block_size = st.slider(
"Block size",
min_value=256,
max_value=min(4096, max(h, w)),
value=min(2048, max(h, w)),
step=256,
)
if h < block_size:
block_size = h
if w < block_size:
block_size = w
bx = by = block_size
image = pad_image_to_croppable(image, bx, by, file_id + str(bx) + str(by))
thumbnail = get_resized_image(image, file_id)
blocks = view_as_blocks(image, (bx, by, 3))
x_blocks, y_blocks = blocks.shape[0], blocks.shape[1]
with st.sidebar:
with st.expander("Model", expanded=True):
model_name = st.selectbox(
"Select a model",
list(MODELS_ZOO.keys()),
index=0,
help="Select a model to use for inference",
)
finetuned = st.checkbox(
"Use finetuned model",
value=True,
help="Use a finetuned model for inference",
)
col1, col2 = st.columns(2)
with col1:
st.write("Running on:")
with col2:
st.button(
"GPU" if torch.cuda.is_available() else "CPU",
disabled=True,
)
st.session_state.post_process = st.checkbox(
"Post-process",
value=True,
help="Apply post-processing to the prediction",
)
st.session_state.model = (
(MODELS_ZOO[model_name] + "_finetuned")
if finetuned
else MODELS_ZOO[model_name]
)
which_y = st.session_state.get("which_y", 0)
which_x = st.session_state.get("which_x", 0)
# Display the selected block
# Scale factor
h, w = image.shape[:2]
small_h, small_w = thumbnail.shape[:2]
scale_h = h / small_h
scale_w = w / small_w
# Calculate the coordinates of the block
y1 = math.floor(which_y * bx / scale_h)
y2 = math.floor((which_y + 1) * bx / scale_h)
x1 = math.floor(which_x * by / scale_w)
x2 = math.floor((which_x + 1) * by / scale_w)
# Draw a rectangle around the selected block
# Check if the coordinates are within the bounds of the image
while y2 > small_h:
which_y -= 1
y1 = math.floor(which_y * bx / scale_h)
y2 = math.floor((which_y + 1) * bx / scale_h)
while x2 > small_w:
which_x -= 1
x1 = math.floor(which_x * by / scale_w)
x2 = math.floor((which_x + 1) * by / scale_w)
st.session_state["which_x"] = which_x
st.session_state["which_y"] = which_y
# Draw a grid on the thumbnail
for i in range(0, small_h, int(bx // scale_h)):
cv2.line(thumbnail, (0, i), (small_w, i), (255, 255, 255), 1)
for i in range(0, small_w, int(by // scale_w)):
cv2.line(thumbnail, (i, 0), (i, small_h), (255, 255, 255), 1)
cv2.rectangle(
thumbnail,
(x1, y1),
(x2, y2),
(0, 0, 255),
5,
)
st.write("### Select a block")
coordinates = streamlit_image_coordinates.streamlit_image_coordinates(
thumbnail, use_column_width=True
)
if coordinates:
which_x = math.floor((w * coordinates["x"] / coordinates["width"]) / bx)
which_y = math.floor((h * coordinates["y"] / coordinates["height"]) / by)
if which_x != st.session_state.get("which_x", 0):
st.session_state["which_x"] = which_x
if which_y != st.session_state.get("which_y", 0):
st.session_state["which_y"] = which_y
st.rerun()
image = blocks[which_y, which_x, 0]
with st.sidebar:
st.image(image, caption="Selected block", use_container_width=True)
st.session_state.image_inference = image
st.session_state.image_id = (
file_id
+ str(which_x)
+ str(which_y)
+ str(bx)
+ str(by)
+ str(model_name)
+ ("_finetuned" if finetuned else "")
)
col1, col2, col3 = st.columns([1, 1, 1])
start_inference()
else:
st.switch_page("pages/1_Load.py")
# Add a callback to mouse move event
|