Spaces:
Runtime error
Runtime error
| import os | |
| import huggingface_hub, spaces | |
| huggingface_hub.snapshot_download(repo_id='tsujuifu/ml-mgie', repo_type='model', local_dir='_ckpt', local_dir_use_symlinks=False) | |
| os.system('ls _ckpt') | |
| from PIL import Image | |
| import numpy as np | |
| import torch as T | |
| import transformers, diffusers | |
| from conversation import conv_templates | |
| from mgie_llava import * | |
| import gradio as gr | |
| def crop_resize(f, sz=512): | |
| w, h = f.size | |
| if w>h: | |
| p = (w-h)//2 | |
| f = f.crop([p, 0, p+h, h]) | |
| elif h>w: | |
| p = (h-w)//2 | |
| f = f.crop([0, p, w, p+w]) | |
| f = f.resize([sz, sz]) | |
| return f | |
| def remove_alter(s): # hack expressive instruction | |
| if 'ASSISTANT:' in s: s = s[s.index('ASSISTANT:')+10:].strip() | |
| if '</s>' in s: s = s[:s.index('</s>')].strip() | |
| if 'alternative' in s.lower(): s = s[:s.lower().index('alternative')] | |
| if '[IMG0]' in s: s = s[:s.index('[IMG0]')] | |
| s = '.'.join([s.strip() for s in s.split('.')[:2]]) | |
| if s[-1]!='.': s += '.' | |
| return s.strip() | |
| DEFAULT_IMAGE_TOKEN = '<image>' | |
| DEFAULT_IMAGE_PATCH_TOKEN = '<im_patch>' | |
| DEFAULT_IM_START_TOKEN = '<im_start>' | |
| DEFAULT_IM_END_TOKEN = '<im_end>' | |
| PATH_LLAVA = '_ckpt/LLaVA-7B-v1' | |
| tokenizer = transformers.AutoTokenizer.from_pretrained(PATH_LLAVA) | |
| model = LlavaLlamaForCausalLM.from_pretrained(PATH_LLAVA, low_cpu_mem_usage=True, torch_dtype=T.float16, use_cache=True).cuda() | |
| image_processor = transformers.CLIPImageProcessor.from_pretrained(model.config.mm_vision_tower, torch_dtype=T.float16) | |
| tokenizer.padding_side = 'left' | |
| tokenizer.add_tokens(['[IMG0]', '[IMG1]', '[IMG2]', '[IMG3]', '[IMG4]', '[IMG5]', '[IMG6]', '[IMG7]'], special_tokens=True) | |
| model.resize_token_embeddings(len(tokenizer)) | |
| ckpt = T.load('_ckpt/mgie_7b/mllm.pt', map_location='cpu') | |
| model.load_state_dict(ckpt, strict=False) | |
| mm_use_im_start_end = getattr(model.config, 'mm_use_im_start_end', False) | |
| tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) | |
| if mm_use_im_start_end: tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True) | |
| vision_tower = model.get_model().vision_tower[0] | |
| vision_tower = transformers.CLIPVisionModel.from_pretrained(vision_tower.config._name_or_path, torch_dtype=T.float16, low_cpu_mem_usage=True).cuda() | |
| model.get_model().vision_tower[0] = vision_tower | |
| vision_config = vision_tower.config | |
| vision_config.im_patch_token = tokenizer.convert_tokens_to_ids([DEFAULT_IMAGE_PATCH_TOKEN])[0] | |
| vision_config.use_im_start_end = mm_use_im_start_end | |
| if mm_use_im_start_end: vision_config.im_start_token, vision_config.im_end_token = tokenizer.convert_tokens_to_ids([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN]) | |
| image_token_len = (vision_config.image_size//vision_config.patch_size)**2 | |
| _ = model.eval() | |
| pipe = diffusers.StableDiffusionInstructPix2PixPipeline.from_pretrained('timbrooks/instruct-pix2pix', torch_dtype=T.float16).to('cuda') | |
| pipe.set_progress_bar_config(disable=True) | |
| pipe.unet.load_state_dict(T.load('_ckpt/mgie_7b/unet.pt', map_location='cpu')) | |
| print('--init MGIE--') | |
| def go_mgie(img, txt, seed, cfg_txt, cfg_img): | |
| EMB = ckpt['emb'].cuda() | |
| with T.inference_mode(): NULL = model.edit_head(T.zeros(1, 8, 4096).half().to('cuda'), EMB) | |
| img, seed = crop_resize(Image.fromarray(img).convert('RGB')), int(seed) | |
| inp = img | |
| img = image_processor.preprocess(img, return_tensors='pt')['pixel_values'][0] | |
| txt = "what will this image be like if '%s'"%(txt) | |
| txt = txt+'\n'+DEFAULT_IM_START_TOKEN+DEFAULT_IMAGE_PATCH_TOKEN*image_token_len+DEFAULT_IM_END_TOKEN | |
| conv = conv_templates['vicuna_v1_1'].copy() | |
| conv.append_message(conv.roles[0], txt), conv.append_message(conv.roles[1], None) | |
| txt = conv.get_prompt() | |
| txt = tokenizer(txt) | |
| txt, mask = T.as_tensor(txt['input_ids']), T.as_tensor(txt['attention_mask']) | |
| with T.inference_mode(): | |
| _ = model.cuda() | |
| out = model.generate(txt.unsqueeze(dim=0).cuda(), images=img.half().unsqueeze(dim=0).cuda(), attention_mask=mask.unsqueeze(dim=0).cuda(), | |
| do_sample=False, max_new_tokens=96, num_beams=1, no_repeat_ngram_size=3, | |
| return_dict_in_generate=True, output_hidden_states=True) | |
| out, hid = out['sequences'][0].tolist(), T.cat([x[-1] for x in out['hidden_states']], dim=1)[0] | |
| if 32003 in out: p = out.index(32003)-1 | |
| else: p = len(hid)-9 | |
| p = min(p, len(hid)-9) | |
| hid = hid[p:p+8] | |
| out = remove_alter(tokenizer.decode(out)) | |
| _ = model.cuda() | |
| emb = model.edit_head(hid.unsqueeze(dim=0), EMB) | |
| res = pipe(image=inp, prompt_embeds=emb, negative_prompt_embeds=NULL, | |
| generator=T.Generator(device='cuda').manual_seed(seed), guidance_scale=cfg_txt, image_guidance_scale=cfg_img).images[0] | |
| return res, out | |
| def go_example(seed, cfg_txt, cfg_img): | |
| ins = ['make the frame red', 'turn the day into night', 'give him a beard', 'make cottage a mansion', | |
| 'remove yellow object from dogs paws', 'change the hair from red to blue', 'remove the text', 'increase the image contrast', | |
| 'remove the people in the background', 'please make this photo professional looking', 'darken the image, sharpen it', 'photoshop the girl out', | |
| 'make more brightness', 'take away the brown filter form the image', 'add more contrast to simulate more light', 'dark on rgb', | |
| 'make the face happy', 'change view as ocean', 'replace basketball with soccer ball', 'let the floor be made of wood'] | |
| i = T.randint(len(ins), (1, )).item() | |
| return './_input/%d.jpg'%(i), ins[i], seed, cfg_txt, cfg_img | |
| go_mgie(np.array(Image.open('./_input/0.jpg').convert('RGB')), 'make the frame red', 13331, 7.5, 1.5) | |
| print('--init GO--') | |
| with gr.Blocks() as app: | |
| gr.Markdown( | |
| """ | |
| # [ICLR\'24] Guiding Instruction-based Image Editing via Multimodal Large Language Models<br> | |
| π this demo is hosted by [Tsu-Jui Fu](https://github.com/tsujuifu/pytorch_mgie)<br> | |
| π a black image means that the output did not pass the [safety checker](https://huggingface.co/CompVis/stable-diffusion-safety-checker)<br> | |
| π if the queue is full (*no GPU available*), you can also try it [here](http://128.111.41.13:7122)<br> | |
| π if the building process takes too long, please try refreshing the page | |
| """ | |
| ) | |
| with gr.Row(): inp, res = [gr.Image(height=384, width=384, label='Input Image', interactive=True), | |
| gr.Image(height=384, width=384, label='Goal Image', interactive=True)] | |
| with gr.Row(): txt, out = [gr.Textbox(label='Instruction', interactive=True), | |
| gr.Textbox(label='Expressive Instruction', interactive=False)] | |
| with gr.Row(): seed, cfg_txt, cfg_img = [gr.Number(value=13331, label='Seed', interactive=True), | |
| gr.Number(value=7.5, label='Text CFG', interactive=True), | |
| gr.Number(value=1.5, label='Image CFG', interactive=True)] | |
| with gr.Row(): btn_exp, btn_sub = [gr.Button('More Example'), gr.Button('Submit')] | |
| btn_exp.click(fn=go_example, inputs=[seed, cfg_txt, cfg_img], outputs=[inp, txt, seed, cfg_txt, cfg_img]) | |
| btn_sub.click(fn=go_mgie, inputs=[inp, txt, seed, cfg_txt, cfg_img], outputs=[res, out]) | |
| ins = ['make the frame red', 'turn the day into night', 'give him a beard', 'make cottage a mansion', | |
| 'remove yellow object from dogs paws', 'change the hair from red to blue', 'remove the text', 'increase the image contrast', | |
| 'remove the people in the background', 'please make this photo professional looking', 'darken the image, sharpen it', 'photoshop the girl out', | |
| 'make more brightness', 'take away the brown filter form the image', 'add more contrast to simulate more light', 'dark on rgb', | |
| 'make the face happy', 'change view as ocean', 'replace basketball with soccer ball', 'let the floor be made of wood'] | |
| gr.Examples(examples=[['./_input/%d.jpg'%(i), ins[i]] for i in [1, 5, 8, 14, 16]], inputs=[inp, txt]) | |
| app.launch() | |