import os import sys import asyncio import logging import threading import queue import gradio as gr import httpx from typing import Generator, Any, Dict, List, Optional, Callable from functools import lru_cache # -------------------- Configuration -------------------- logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s") # -------------------- External Model Call (with Caching and Retry) -------------------- # Removed @lru_cache here, as it caused issues with async and Gradio async def call_model(prompt: str, model: str = "gpt-4o", api_key: str = None, max_retries: int = 3) -> str: """Sends a prompt to the OpenAI API endpoint, with caching and retries.""" if api_key is None: api_key = os.getenv("OPENAI_API_KEY") if api_key is None: raise ValueError("OpenAI API key not found.") url = "https://api.openai.com/v1/chat/completions" headers = { "Authorization": f"Bearer {api_key}", "Content-Type": "application/json" } payload = { "model": model, "messages": [{"role": "user", "content": prompt}], } for attempt in range(max_retries): try: async with httpx.AsyncClient(timeout=httpx.Timeout(300.0)) as client: response = await client.post(url, headers=headers, json=payload) response.raise_for_status() response_json = response.json() return response_json["choices"][0]["message"]["content"] except httpx.HTTPStatusError as e: logging.error(f"HTTP error (attempt {attempt + 1}/{max_retries}): {e}") if e.response.status_code in (502, 503, 504): # Retry on 502, 503, 504 await asyncio.sleep(2 ** attempt) # Exponential backoff continue else: raise # Re-raise for other HTTP errors except httpx.RequestError as e: logging.error(f"Request error (attempt {attempt + 1}/{max_retries}): {e}") await asyncio.sleep(2 ** attempt) continue except Exception as e: logging.error(f"An unexpected error occurred (attempt {attempt+1}/{max_retries}): {e}") raise raise Exception(f"Failed to get response from OpenAI API after {max_retries} attempts.") # -------------------- Shared Context -------------------- class Context: def __init__(self, original_task: str, optimized_task: Optional[str] = None, plan: Optional[str] = None, code: Optional[str] = None, review_comments: Optional[List[Dict[str, str]]] = None, test_cases: Optional[str] = None, test_results: Optional[str] = None, documentation: Optional[str] = None, conversation_history: Optional[List[Dict[str, str]]] = None): self.original_task = original_task self.optimized_task = optimized_task self.plan = plan self.code = code self.review_comments = review_comments or [] self.test_cases = test_cases self.test_results = test_results self.documentation = documentation self.conversation_history = conversation_history or [] def add_conversation_entry(self, agent_name: str, message: str): self.conversation_history.append({"agent": agent_name, "message": message}) # -------------------- Agent Classes -------------------- class PromptOptimizerAgent: async def optimize_prompt(self, context: Context, api_key: str) -> Context: """Optimizes the user's initial prompt.""" system_prompt = "Improve the prompt. Be clear, specific, and complete. Keep original intent. Return ONLY the revised prompt." full_prompt = f"{system_prompt}\n\nUser's prompt:\n{context.original_task}" optimized = await call_model(full_prompt, model="gpt-4o", api_key=api_key) context.optimized_task = optimized context.add_conversation_entry("Prompt Optimizer", f"Optimized Task:\n{optimized}") return context class OrchestratorAgent: def __init__(self, log_queue: queue.Queue, human_in_the_loop_event: threading.Event, human_input_queue: queue.Queue) -> None: self.log_queue = log_queue self.human_in_the_loop_event = human_in_the_loop_event self.human_input_queue = human_input_queue async def generate_plan(self, context: Context, api_key: str, human_feedback: Optional[str] = None) -> Context: """Generates a plan, potentially requesting human feedback.""" if human_feedback: prompt = ( f"You are a planner. Revise/complete the plan for '{context.original_task}' using feedback:\n" f"{human_feedback}\n\nCurrent Plan:\n{context.plan if context.plan else 'No plan yet.'}\n\n" "Output the plan as a numbered list. If unsure, output 'REQUEST_HUMAN_FEEDBACK\\n[Question]'" ) plan = await call_model(prompt, model="gpt-4o", api_key=api_key) else: prompt = ( f"You are a planner. Create a plan for: '{context.optimized_task}'. " "Break down the task. Assign sub-tasks to: Coder, Code Reviewer, Quality Assurance Tester, and Documentation Agent. " "Include review/revision steps. Consider error handling. Include documentation instructions.\n\n" "If unsure, output 'REQUEST_HUMAN_FEEDBACK\\n[Question]'\n\nOutput the plan as a numbered list." ) plan = await call_model(prompt, model="gpt-4o", api_key=api_key) if "REQUEST_HUMAN_FEEDBACK" in plan: self.log_queue.put("[Orchestrator]: Requesting human feedback...") question = plan.split("REQUEST_HUMAN_FEEDBACK\n", 1)[1].strip() self.log_queue.put(f"[Orchestrator]: Question for human: {question}") #Prepare detailed context for human feedback_request_context = (f"The orchestrator agent is requesting feedback on the following task:\n **{context.optimized_task}**\n\n" f"The current plan (if any):\n**{context.plan}**\n\n" if context.plan else "") + f"The specific question is:\n**{question}**" self.human_in_the_loop_event.set() # Signal the human input thread human_response = self.get_human_response(feedback_request_context) # Pass context to input function self.human_in_the_loop_event.clear() # Reset the event self.log_queue.put(f"[Orchestrator]: Received human feedback: {human_response}") context.add_conversation_entry("Orchestrator", f"Plan:\n{plan}\n\nHuman Feedback Requested. Question: {question}") return await self.generate_plan(context, api_key, human_response) # Recursive call context.plan = plan context.add_conversation_entry("Orchestrator", f"Plan:\n{plan}") return context def get_human_response(self, feedback_request_context): """Gets human input, using the Gradio queue and event.""" self.human_input_queue.put(feedback_request_context) # Put the question into Gradio human_response = self.human_input_queue.get() # Get the response return human_response class CoderAgent: async def generate_code(self, context: Context, api_key: str, model: str = "gpt-4o") -> Context: """Generates code based on instructions.""" prompt = ( "You are a coding agent. Output ONLY the code. " "Adhere to best practices. Include error handling.\n\n" f"Instructions:\n{context.plan}" ) code = await call_model(prompt, model=model, api_key=api_key) context.code = code context.add_conversation_entry("Coder", f"Code:\n{code}") return context class CodeReviewerAgent: async def review_code(self, context: Context, api_key: str) -> Context: """Reviews code. Provides concise, actionable feedback or 'APPROVE'.""" prompt = ( "You are a code reviewer. Provide CONCISE feedback. " "Focus on correctness, efficiency, readability, error handling, security, and adherence to the task. " "Suggest improvements. If acceptable, respond with ONLY 'APPROVE'. " "Do NOT generate code.\n\n" f"Task: {context.optimized_task}\n\nCode:\n{context.code}" ) review = await call_model(prompt, model="gpt-4o", api_key=api_key) context.add_conversation_entry("Code Reviewer", f"Review:\n{review}") # Structured Feedback (Example) if "APPROVE" not in review.upper(): structured_review = {"comments": []} #In a real implementation you might use a more advanced parsing technique here for line in review.splitlines(): if line.strip(): #Simple example structured_review["comments"].append({"issue": line.strip(), "line_number": "N/A", "severity": "Medium"}) #Dummy data context.review_comments.append(structured_review) return context class QualityAssuranceTesterAgent: async def generate_test_cases(self, context: Context, api_key: str) -> Context: """Generates test cases.""" prompt = ( "You are a testing agent. Generate test cases. " "Consider edge cases and error scenarios. Output in a clear format.\n\n" f"Task: {context.optimized_task}\n\nCode:\n{context.code}" ) test_cases = await call_model(prompt, model="gpt-4o", api_key=api_key) context.test_cases = test_cases context.add_conversation_entry("QA Tester", f"Test Cases:\n{test_cases}") return context async def run_tests(self, context: Context, api_key: str) -> Context: """Runs tests and reports results.""" prompt = ( "Run the test cases. Compare actual vs expected output. " "State discrepancies. If all pass, output 'TESTS PASSED'.\n\n" f"Code:\n{context.code}\n\nTest Cases:\n{context.test_cases}" ) test_results = await call_model(prompt, model="gpt-4o", api_key=api_key) context.test_results = test_results context.add_conversation_entry("QA Tester", f"Test Results:\n{test_results}") return context class DocumentationAgent: async def generate_documentation(self, context: Context, api_key: str) -> Context: """Generates documentation, including a --help message.""" prompt = ( "Generate clear and concise documentation. " "Include a brief description, explanation, and a --help message.\n\n" f"Code:\n{context.code}" ) documentation = await call_model(prompt, model="gpt-4o", api_key=api_key) context.documentation = documentation context.add_conversation_entry("Documentation Agent", f"Documentation:\n{documentation}") return context # -------------------- Agent Dispatcher (New) -------------------- class AgentDispatcher: def __init__(self, log_queue: queue.Queue, human_in_the_loop_event: threading.Event, human_input_queue: queue.Queue): self.log_queue = log_queue self.human_in_the_loop_event = human_in_the_loop_event self.human_input_queue = human_input_queue self.agents = { "prompt_optimizer": PromptOptimizerAgent(), "orchestrator": OrchestratorAgent(log_queue, human_in_the_loop_event, human_input_queue), "coder": CoderAgent(), "code_reviewer": CodeReviewerAgent(), "qa_tester": QualityAssuranceTesterAgent(), "documentation_agent": DocumentationAgent(), } async def dispatch(self, agent_name: str, context: Context, api_key: str, **kwargs) -> Context: """Dispatches the task to the specified agent.""" agent = self.agents.get(agent_name) if not agent: raise ValueError(f"Unknown agent: {agent_name}") self.log_queue.put(f"[{agent_name.replace('_', ' ').title()}]: Starting task...") if agent_name == "prompt_optimizer": context = await agent.optimize_prompt(context, api_key) elif agent_name == "orchestrator": context = await agent.generate_plan(context, api_key) #Removed human_feedback elif agent_name == "coder": context = await agent.generate_code(context, api_key, **kwargs) elif agent_name == "code_reviewer": context = await agent.review_code(context, api_key) elif agent_name == "qa_tester": if kwargs.get("generate_tests", False): context = await agent.generate_test_cases(context, api_key) elif kwargs.get("run_tests", False): context = await agent.run_tests(context, api_key) elif agent_name == "documentation_agent": context = await agent.generate_documentation(context, api_key) else: raise ValueError(f"Unknown Agent Name: {agent_name}") return context async def determine_next_agent(self, context:Context, api_key:str) -> str: """Determines the next agent to run based on the current context.""" if not context.optimized_task: return "prompt_optimizer" if not context.plan: return "orchestrator" if not context.code: return "coder" if not context.review_comments or "APPROVE" not in [comment.get('issue',"").upper() for comment_list in context.review_comments for comment in comment_list.get("comments",[]) ]: return "code_reviewer" if not context.test_cases: return "qa_tester" if not context.test_results or "TESTS PASSED" not in context.test_results.upper() : return "qa_tester" if not context.documentation: return "documentation_agent" return "done" # All tasks are complete # -------------------- Multi-Agent Conversation (Refactored) -------------------- async def multi_agent_conversation(task_message: str, log_queue: queue.Queue, api_key: str, human_in_the_loop_event: threading.Event, human_input_queue: queue.Queue) -> None: """ Conducts the multi-agent conversation using the AgentDispatcher. """ context = Context(original_task=task_message) dispatcher = AgentDispatcher(log_queue, human_in_the_loop_event, human_input_queue) next_agent = await dispatcher.determine_next_agent(context, api_key) while next_agent != "done": if next_agent == "qa_tester": if not context.test_cases: context = await dispatcher.dispatch(next_agent, context, api_key, generate_tests=True) else: context = await dispatcher.dispatch(next_agent, context, api_key, run_tests=True) elif next_agent == "coder" and (context.review_comments or context.test_results): #Coder needs a different model after the first coding context = await dispatcher.dispatch(next_agent,context, api_key, model="gpt-3.5-turbo-16k") else: context = await dispatcher.dispatch(next_agent, context, api_key) # Call the agent next_agent = await dispatcher.determine_next_agent(context, api_key) if next_agent == "code_reviewer" and context.review_comments and "APPROVE" in [comment.get('issue',"").upper() for comment_list in context.review_comments for comment in comment_list.get("comments",[]) ]: next_agent = await dispatcher.determine_next_agent(context, api_key) # Check for maximum revisions if next_agent == "coder" and len([entry for entry in context.conversation_history if entry["agent"] == "Coder"]) > 5: log_queue.put("Maximum revision iterations reached. Exiting.") break; log_queue.put("Conversation complete.") log_queue.put(("result", context.conversation_history)) # -------------------- Process Generator and Human Input -------------------- def process_conversation_generator(task_message: str, api_key: str, human_in_the_loop_event: threading.Event, human_input_queue: queue.Queue) -> Generator[str, None, None]: """ Wraps the conversation, yields log messages, and handles human input within a single thread. """ log_q: queue.Queue = queue.Queue() # Run the multi-agent conversation *synchronously* within this function. asyncio.run(multi_agent_conversation(task_message, log_q, api_key, human_in_the_loop_event, human_input_queue)) # Process the log queue and handle human-in-the-loop final_result = None while True: # Loop indefinitely to handle multiple potential human feedback requests. try: msg = log_q.get_nowait() # Non-blocking get from the log queue. if isinstance(msg, tuple) and msg[0] == "result": final_result = msg[1] yield "Conversation complete." # Indicate completion. break # Exit the loop after processing the final result. else: yield msg # Yield the log message. except queue.Empty: pass # No log message available, continue checking for human input. if human_in_the_loop_event.is_set(): yield "Waiting for human feedback..." # Indicate waiting state. try: feedback_request = human_input_queue.get( timeout=0.1) # Get the context/question for feedback. human_interface = get_human_feedback(feedback_request) yield gr.Textbox.update(visible=False), gr.update(visible=True) human_feedback = human_input_queue.get( timeout=300) # Wait (block) for human feedback, with a timeout. human_in_the_loop_event.clear() # Reset the event after getting feedback. yield gr.Textbox.update(visible=True), human_interface.close() # Hide feedback UI. except queue.Empty: pass # Add a small sleep to avoid busy-waiting and reduce CPU usage. time.sleep(0.1) if final_result: conv_text = "\n=== Conversation ===\n" for entry in final_result: conv_text += f"[{entry['agent']}]: {entry['message']}\n\n" yield conv_text def get_human_feedback(placeholder_text): """Gets human input using a Gradio Textbox.""" with gr.Blocks() as human_feedback_interface: with gr.Row(): human_input = gr.Textbox(lines=4, label="Human Feedback", placeholder=placeholder_text) with gr.Row(): submit_button = gr.Button("Submit Feedback") def submit_feedback(input_text): # Put the feedback into the shared queue human_input_queue.put(input_text) return "" # Clear the input box after submission submit_button.click(fn=submit_feedback, inputs=human_input, outputs=human_input) human_feedback_interface.load(None, [], []) # Keep interface alive return human_feedback_interface # -------------------- Chat Function for Gradio -------------------- def multi_agent_chat(message: str, history: List[Any], openai_api_key: str = None) -> Generator[str, None, None]: """Chat function for Gradio.""" if not openai_api_key: openai_api_key = os.getenv("OPENAI_API_KEY") if not openai_api_key: yield "Error: API key not provided." return human_in_the_loop_event = threading.Event() human_input_queue = queue.Queue() # Use a single queue for both requests and responses yield from process_conversation_generator(message, openai_api_key, human_in_the_loop_event, human_input_queue) # -------------------- Launch the Chatbot -------------------- # Create the main chat interface iface = gr.ChatInterface( fn=multi_agent_chat, additional_inputs=[gr.Textbox(label="OpenAI API Key (optional)", type="password", placeholder="Leave blank to use env variable")], title="Multi-Agent Task Solver with Human-in-the-Loop", description=""" - Collaborative workflow with Human-in-the-Loop. - Orchestrator can ask for human feedback. - Enter a task; agents will work on it. You may be prompted for input. - Max 5 revisions. - Provide API Key. """ ) #Need a dummy interface to prevent Gradio errors dummy_iface = gr.Interface(lambda x:x, "textbox", "textbox") if __name__ == "__main__": demo = gr.TabbedInterface([iface, dummy_iface], ["Chatbot", "Dummy"]) demo.launch(share=True) import time #Import the time module