Spaces:
Running
Running
Upload keyframe_utils.py
Browse files- utils/keyframe_utils.py +78 -0
utils/keyframe_utils.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import random
|
3 |
+
import os
|
4 |
+
from diffusers import StableDiffusionPipeline
|
5 |
+
import torch
|
6 |
+
|
7 |
+
# Load and cache the diffusion pipeline (only once)
|
8 |
+
pipe = StableDiffusionPipeline.from_pretrained(
|
9 |
+
"CompVis/stable-diffusion-v1-4",
|
10 |
+
torch_dtype=torch.float16
|
11 |
+
)
|
12 |
+
pipe = pipe.to("cuda")
|
13 |
+
|
14 |
+
|
15 |
+
def generate_keyframe_prompt(segment):
|
16 |
+
"""
|
17 |
+
Generates a detailed prompt optimized for Stable Diffusion (low-resolution, preview style)
|
18 |
+
based on the segment description.
|
19 |
+
"""
|
20 |
+
description = segment.get("description", "")
|
21 |
+
speaker = segment.get("speaker", "")
|
22 |
+
narration = segment.get("narration", "")
|
23 |
+
segment_id = segment.get("segment_id")
|
24 |
+
|
25 |
+
prompt_parts = []
|
26 |
+
|
27 |
+
if description:
|
28 |
+
prompt_parts.append(f"Scene: {description}.")
|
29 |
+
|
30 |
+
if speaker and narration:
|
31 |
+
prompt_parts.append(f"Character '{speaker}' speaking: \"{narration}\".")
|
32 |
+
elif narration:
|
33 |
+
prompt_parts.append(f"Narration: \"{narration}\".")
|
34 |
+
|
35 |
+
prompt_parts.append("Style: Simple, cartoonish, line art, sketch, low detail, illustrative, minimal background, focus on main subject.")
|
36 |
+
prompt_parts.append("Resolution: lowres, 256x256.")
|
37 |
+
prompt_parts.append("Lighting: Nighttime museum, dim lighting.")
|
38 |
+
prompt_parts.append("Setting: Museum interior, exhibits.")
|
39 |
+
|
40 |
+
negative_prompt = "blurry, distorted, ugly, tiling, poorly drawn, out of frame, disfigured, deformed, bad anatomy, watermark, text, signature, high detail, realistic, photorealistic, complex"
|
41 |
+
|
42 |
+
return {
|
43 |
+
"prompt": " ".join(prompt_parts).strip(),
|
44 |
+
"negative_prompt": negative_prompt
|
45 |
+
}
|
46 |
+
|
47 |
+
|
48 |
+
def generate_all_keyframe_images(script_data, output_dir="keyframes"):
|
49 |
+
"""
|
50 |
+
Generates 3 keyframe images per segment using Stable Diffusion,
|
51 |
+
stores them in the given output directory.
|
52 |
+
"""
|
53 |
+
os.makedirs(output_dir, exist_ok=True)
|
54 |
+
keyframe_outputs = []
|
55 |
+
|
56 |
+
for segment in script_data:
|
57 |
+
sd_prompts = generate_keyframe_prompt(segment)
|
58 |
+
prompt = sd_prompts["prompt"]
|
59 |
+
negative_prompt = sd_prompts["negative_prompt"]
|
60 |
+
segment_id = segment.get("segment_id")
|
61 |
+
|
62 |
+
frame_images = []
|
63 |
+
for i in range(3):
|
64 |
+
image = pipe(prompt, negative_prompt=negative_prompt, num_inference_steps=20, guidance_scale=7.5, height=256, width=256).images[0]
|
65 |
+
image_path = os.path.join(output_dir, f"segment_{segment_id}_v{i+1}.png")
|
66 |
+
image.save(image_path)
|
67 |
+
frame_images.append(image_path)
|
68 |
+
|
69 |
+
keyframe_outputs.append({
|
70 |
+
"segment_id": segment_id,
|
71 |
+
"prompt": prompt,
|
72 |
+
"negative_prompt": negative_prompt,
|
73 |
+
"frame_images": frame_images
|
74 |
+
})
|
75 |
+
|
76 |
+
print(f"✓ Generated 3 images for Segment {segment_id}")
|
77 |
+
|
78 |
+
return keyframe_outputs
|