qqwjq1981 commited on
Commit
f9a79c6
·
verified ·
1 Parent(s): bbf5ede

Update utils/keyframe_utils.py

Browse files
Files changed (1) hide show
  1. utils/keyframe_utils.py +30 -8
utils/keyframe_utils.py CHANGED
@@ -4,6 +4,7 @@ import os
4
  from diffusers import StableDiffusionPipeline
5
  import torch
6
  import openai
 
7
 
8
  # Load and cache the diffusion pipeline (only once)
9
  pipe = StableDiffusionPipeline.from_pretrained(
@@ -13,20 +14,32 @@ pipe = StableDiffusionPipeline.from_pretrained(
13
  pipe = pipe.to("cpu")
14
 
15
 
16
- openai.api_key = os.getenv("OPENAI_API_KEY") # Make sure this is set in your environment
17
 
18
- # Global story context (in Chinese)
 
 
19
  story_context_cn = "《博物馆的全能ACE》是一部拟人化博物馆文物与AI讲解助手互动的短片,讲述太阳人石刻在闭馆后的博物馆中,遇到了新来的AI助手博小翼,两者展开对话,AI展示了自己的多模态讲解能力与文化知识,最终被文物们认可,并一起展开智慧导览服务的故事。该片融合了文物拟人化、夜间博物馆奇妙氛围、科技感界面与中国地方文化元素,风格活泼、具未来感。"
20
 
 
 
 
 
 
21
  def generate_keyframe_prompt(segment):
22
  """
23
- Calls GPT-4o to generate an image prompt optimized for Stable Diffusion,
24
- based on segment content and full story context.
25
  """
 
 
 
 
 
 
 
 
26
  description = segment.get("description", "")
27
  speaker = segment.get("speaker", "")
28
  narration = segment.get("narration", "")
29
- segment_id = segment.get("segment_id")
30
 
31
  input_prompt = f"你是一个擅长视觉脚本设计的AI,请基于以下故事整体背景与分镜内容,帮我生成一个适合用于Stable Diffusion图像生成的英文提示词(image prompt),用于生成低分辨率草图风格的关键帧。请注意突出主要角色、镜头氛围、光影、构图、动作,避免复杂背景和细节。
32
 
@@ -48,16 +61,26 @@ def generate_keyframe_prompt(segment):
48
  )
49
  output_text = response["choices"][0]["message"]["content"]
50
 
51
- # Split response into prompt + negative if possible
52
  if "Negative prompt:" in output_text:
53
  prompt, negative = output_text.split("Negative prompt:", 1)
54
  else:
55
  prompt, negative = output_text, "blurry, distorted, low quality, text, watermark"
56
 
57
- return {
58
  "prompt": prompt.strip(),
59
  "negative_prompt": negative.strip()
60
  }
 
 
 
 
 
 
 
 
 
 
 
61
  except Exception as e:
62
  print(f"[Error] GPT-4o prompt generation failed for segment {segment_id}: {e}")
63
  return {
@@ -65,7 +88,6 @@ def generate_keyframe_prompt(segment):
65
  "negative_prompt": ""
66
  }
67
 
68
-
69
  def generate_all_keyframe_images(script_data, output_dir="keyframes"):
70
  """
71
  Generates 3 keyframe images per segment using Stable Diffusion,
 
4
  from diffusers import StableDiffusionPipeline
5
  import torch
6
  import openai
7
+ from pathlib import Path
8
 
9
  # Load and cache the diffusion pipeline (only once)
10
  pipe = StableDiffusionPipeline.from_pretrained(
 
14
  pipe = pipe.to("cpu")
15
 
16
 
 
17
 
18
+ openai.api_key = os.getenv("OPENAI_API_KEY")
19
+
20
+ # Global story context
21
  story_context_cn = "《博物馆的全能ACE》是一部拟人化博物馆文物与AI讲解助手互动的短片,讲述太阳人石刻在闭馆后的博物馆中,遇到了新来的AI助手博小翼,两者展开对话,AI展示了自己的多模态讲解能力与文化知识,最终被文物们认可,并一起展开智慧导览服务的故事。该片融合了文物拟人化、夜间博物馆奇妙氛围、科技感界面与中国地方文化元素,风格活泼、具未来感。"
22
 
23
+ # Cache directory for prompts
24
+ CACHE_DIR = Path("prompt_cache")
25
+ CACHE_DIR.mkdir(exist_ok=True)
26
+ LOG_PATH = Path("prompt_log.jsonl")
27
+
28
  def generate_keyframe_prompt(segment):
29
  """
30
+ Generates and caches image prompts using GPT-4o for a given segment.
 
31
  """
32
+ segment_id = segment.get("segment_id")
33
+ cache_file = CACHE_DIR / f"segment_{segment_id}.json"
34
+
35
+ # Return cached result if exists
36
+ if cache_file.exists():
37
+ with open(cache_file, "r", encoding="utf-8") as f:
38
+ return json.load(f)
39
+
40
  description = segment.get("description", "")
41
  speaker = segment.get("speaker", "")
42
  narration = segment.get("narration", "")
 
43
 
44
  input_prompt = f"你是一个擅长视觉脚本设计的AI,请基于以下故事整体背景与分镜内容,帮我生成一个适合用于Stable Diffusion图像生成的英文提示词(image prompt),用于生成低分辨率草图风格的关键帧。请注意突出主要角色、镜头氛围、光影、构图、动作,避免复杂背景和细节。
45
 
 
61
  )
62
  output_text = response["choices"][0]["message"]["content"]
63
 
 
64
  if "Negative prompt:" in output_text:
65
  prompt, negative = output_text.split("Negative prompt:", 1)
66
  else:
67
  prompt, negative = output_text, "blurry, distorted, low quality, text, watermark"
68
 
69
+ result = {
70
  "prompt": prompt.strip(),
71
  "negative_prompt": negative.strip()
72
  }
73
+
74
+ # Save to cache
75
+ with open(cache_file, "w", encoding="utf-8") as f:
76
+ json.dump(result, f, ensure_ascii=False, indent=2)
77
+
78
+ # Log to JSONL for review
79
+ with open(LOG_PATH, "a", encoding="utf-8") as logf:
80
+ logf.write(json.dumps({"segment_id": segment_id, **result}, ensure_ascii=False) + "\n")
81
+
82
+ return result
83
+
84
  except Exception as e:
85
  print(f"[Error] GPT-4o prompt generation failed for segment {segment_id}: {e}")
86
  return {
 
88
  "negative_prompt": ""
89
  }
90
 
 
91
  def generate_all_keyframe_images(script_data, output_dir="keyframes"):
92
  """
93
  Generates 3 keyframe images per segment using Stable Diffusion,