Spaces:
Runtime error
Runtime error
| import os | |
| import random | |
| import spaces | |
| import gradio as gr | |
| import torch | |
| from diffusers.utils import load_image | |
| from diffusers.pipelines.flux.pipeline_flux_controlnet import FluxControlNetPipeline | |
| from diffusers.models.controlnet_flux import FluxControlNetModel | |
| import numpy as np | |
| from huggingface_hub import login, snapshot_download | |
| # Configuration | |
| BASE_MODEL = 'black-forest-labs/FLUX.1-dev' | |
| CONTROLNET_MODEL = 'promeai/FLUX.1-controlnet-lineart-promeai' | |
| CSS = """ | |
| #col-container { | |
| margin: 0 auto; | |
| max-width: 640px; | |
| } | |
| """ | |
| # Setup | |
| AUTH_TOKEN = os.getenv("HF_AUTH_TOKEN") | |
| if AUTH_TOKEN: | |
| login(AUTH_TOKEN) | |
| else: | |
| raise ValueError("Hugging Face auth token not found. Please set HF_AUTH_TOKEN in the environment.") | |
| MODEL_DIR = snapshot_download( | |
| repo_id=BASE_MODEL, | |
| revision="main", | |
| use_auth_token=AUTH_TOKEN | |
| ) | |
| DEVICE = "cuda" if torch.cuda.is_available() else "cpu" | |
| TORCH_DTYPE = torch.bfloat16 if torch.cuda.is_available() else torch.float32 | |
| CONTROLNET = FluxControlNetModel.from_pretrained(CONTROLNET_MODEL, torch_dtype=TORCH_DTYPE) | |
| PIPE = FluxControlNetPipeline.from_pretrained(MODEL_DIR, controlnet=CONTROLNET, torch_dtype=TORCH_DTYPE) | |
| torch.cuda.empty_cache() | |
| PIPE = PIPE.to(DEVICE) | |
| MAX_SEED = np.iinfo(np.int32).max | |
| def infer( | |
| prompt, | |
| control_image_path, | |
| controlnet_conditioning_scale, | |
| guidance_scale, | |
| num_inference_steps, | |
| seed, | |
| randomize_seed, | |
| ): | |
| global DEVICE, TORCH_DTYPE | |
| DEVICE = "cuda" if torch.cuda.is_available() else "cpu" | |
| TORCH_DTYPE = torch.bfloat16 if torch.cuda.is_available() else torch.float32 | |
| print(f"Inference: using device: {DEVICE} (torch_dtype={TORCH_DTYPE})") | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| generator = torch.manual_seed(seed) | |
| control_image = load_image(control_image_path) if control_image_path else None | |
| # Generate image | |
| result = PIPE( | |
| prompt=prompt, | |
| control_image=control_image, | |
| controlnet_conditioning_scale=controlnet_conditioning_scale, | |
| num_inference_steps=num_inference_steps, | |
| guidance_scale=guidance_scale, | |
| generator=generator, | |
| ).images[0] | |
| return result, seed | |
| with gr.Blocks(css=CSS) as demo: | |
| with gr.Column(elem_id="col-container"): | |
| gr.Markdown("# Flux.1[dev] LineArt") | |
| gr.Markdown("### Zero-shot Partial Style Transfer for Line Art Images, Powered by FLUX.1") | |
| control_image = gr.Image( | |
| sources=['upload', 'webcam', 'clipboard'], | |
| type="filepath", | |
| label="Control Image (LineArt)" | |
| ) | |
| prompt = gr.Text( | |
| label="Prompt", | |
| placeholder="Enter your prompt", | |
| max_lines=1, | |
| container=False | |
| ) | |
| run_button = gr.Button("Generate", variant="primary") | |
| result = gr.Image(label="Result", show_label=False) | |
| with gr.Accordion("Advanced Settings", open=False): | |
| controlnet_conditioning_scale = gr.Slider( | |
| label="ControlNet Conditioning Scale", | |
| minimum=0.0, | |
| maximum=1.0, | |
| value=0.6, | |
| step=0.1 | |
| ) | |
| guidance_scale = gr.Slider( | |
| label="Guidance Scale", | |
| minimum=1.0, | |
| maximum=10.0, | |
| value=3.5, | |
| step=0.1 | |
| ) | |
| num_inference_steps = gr.Slider( | |
| label="Number of Inference Steps", | |
| minimum=1, | |
| maximum=100, | |
| value=28, | |
| step=1 | |
| ) | |
| seed = gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| value=0 | |
| ) | |
| randomize_seed = gr.Checkbox(label="Randomize Seed", value=True) | |
| gr.Examples( | |
| examples=[ | |
| "Shiba Inu wearing dinosaur costume riding skateboard", | |
| "Victorian style mansion interior with candlelight", | |
| "Loading screen for Grand Theft Otter: Clam Andreas" | |
| ], | |
| inputs=[prompt] | |
| ) | |
| gr.on( | |
| triggers=[run_button.click, prompt.submit], | |
| fn = infer, | |
| inputs=[ | |
| prompt, | |
| control_image, | |
| controlnet_conditioning_scale, | |
| guidance_scale, | |
| num_inference_steps, | |
| seed, | |
| randomize_seed | |
| ], | |
| outputs = [result, seed] | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() |