File size: 3,774 Bytes
cb3a670
 
 
 
 
 
 
44d5f7f
cb3a670
 
 
 
 
 
 
 
0e203e7
d65a2ca
 
 
 
 
 
 
 
 
 
 
 
 
cb3a670
 
 
 
eb57a64
cb3a670
 
3f298d8
cb3a670
3f298d8
cb3a670
3f298d8
 
cb3a670
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d65a2ca
 
44d5f7f
d65a2ca
 
 
3f298d8
 
 
c044359
cb3a670
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c044359
 
 
3f298d8
cb3a670
3f298d8
cb3a670
 
c044359
d65a2ca
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import os
import warnings
from typing import *
from dotenv import load_dotenv
from transformers import logging

from langgraph.checkpoint.memory import MemorySaver
from langchain_openai import ChatOpenAI

from interface import create_demo
from medrax.agent import *
from medrax.tools import *
from medrax.utils import *

warnings.filterwarnings("ignore")
logging.set_verbosity_error()
load_dotenv() 

# Set environment variables explicitly to ensure they're available
api_key = os.getenv("OPENAI_API_KEY")
base_url = os.getenv("OPENAI_BASE_URL")

if not api_key:
    raise ValueError("OPENAI_API_KEY not found in environment variables")
if not base_url:
    raise ValueError("OPENAI_BASE_URL not found in environment variables")

# Set them in environment for libraries that might read directly from os.environ
os.environ["OPENAI_API_KEY"] = api_key
os.environ["OPENAI_BASE_URL"] = base_url

def initialize_agent(
    prompt_file,
    tools_to_use=None,
    model_dir="./model-weights",
    temp_dir="temp",
    device="cuda",
    model="google/gemini-2.5-pro-exp-03-25:free",
    temperature=0.7,
    top_p=0.95
):
    """Initialize the MedRAX agent with specified tools and configuration."""

    prompts = load_prompts_from_file(prompt_file)
    prompt = prompts["MEDICAL_ASSISTANT"]

    all_tools = {
        "ChestXRayClassifierTool": lambda: ChestXRayClassifierTool(device=device),
        "ChestXRaySegmentationTool": lambda: ChestXRaySegmentationTool(device=device),
        "LlavaMedTool": lambda: LlavaMedTool(cache_dir=model_dir, device=device, load_in_8bit=True),
        "XRayVQATool": lambda: XRayVQATool(cache_dir=model_dir, device=device),
        "ChestXRayReportGeneratorTool": lambda: ChestXRayReportGeneratorTool(
            cache_dir=model_dir, device=device
        ),
        "XRayPhraseGroundingTool": lambda: XRayPhraseGroundingTool(
            cache_dir=model_dir, temp_dir=temp_dir, load_in_8bit=True, device=device
        ),
        "ChestXRayGeneratorTool": lambda: ChestXRayGeneratorTool(
            model_path=f"{model_dir}/roentgen", temp_dir=temp_dir, device=device
        ),
        "ImageVisualizerTool": lambda: ImageVisualizerTool(),
        "DicomProcessorTool": lambda: DicomProcessorTool(temp_dir=temp_dir),
    }

    tools_dict = {}
    tools_to_use = tools_to_use or all_tools.keys()
    for tool_name in tools_to_use:
        if tool_name in all_tools:
            tools_dict[tool_name] = all_tools[tool_name]()

    checkpointer = MemorySaver()
    
    # Explicitly pass the API key and base URL
    model = ChatOpenAI(
        model_name=model,
        api_key=api_key,
        base_url=base_url,
        temperature=temperature,
        top_p=top_p,
    )

    agent = Agent(
        model,
        tools=list(tools_dict.values()),
        log_tools=True,
        log_dir="logs",
        system_prompt=prompt,
        checkpointer=checkpointer,
    )

    print("Agent initialized")
    return agent, tools_dict


if __name__ == "__main__":
    print("Starting server...")

    selected_tools = [
        "ImageVisualizerTool",
        "DicomProcessorTool",
        "ChestXRayClassifierTool",
        "ChestXRaySegmentationTool",
        "ChestXRayReportGeneratorTool",
        "XRayVQATool",
        # "LlavaMedTool",
        # "XRayPhraseGroundingTool",
        # "ChestXRayGeneratorTool",
    ]

    agent, tools_dict = initialize_agent(
        "medrax/docs/system_prompts.txt",
        tools_to_use=selected_tools,
        model_dir="./model-weights",
        temp_dir="temp",
        device="cuda",
        model="google/gemini-2.5-pro-exp-03-25:free",
        temperature=0.7,
        top_p=0.95
    )

    demo = create_demo(agent, tools_dict)
    demo.launch(server_name="0.0.0.0", server_port=8585, share=True)