Spaces:
Sleeping
Sleeping
import argparse | |
import util | |
from collections import defaultdict | |
import pandas as pd | |
def get_domain(x): | |
for domain in ["chest_xray", "mri", "histology", "gross", "ct_scan"]: | |
in_domain = x["domain"][domain] | |
if in_domain: | |
return domain | |
def main(args): | |
scores_data = util.load_file_jsonl(args.scores_file) | |
predictions = [ | |
(x["question_id"], x["type"], get_domain(x), x["gpt_eval"].split("\n")[0].split(" ")) | |
for x in scores_data | |
] | |
score_type_dict = defaultdict(lambda: defaultdict(list)) | |
for q_id, q_type, domain, (a1_score, a2_score) in predictions: | |
score_type_dict[q_type][1].append(a1_score) | |
score_type_dict[q_type][2].append(a2_score) | |
score_type_dict["overall"][1].append(a1_score) | |
score_type_dict["overall"][2].append(a2_score) | |
score_type_dict[domain][1].append(a1_score) | |
score_type_dict[domain][2].append(a2_score) | |
result = defaultdict(dict) | |
for q_type, score_dict in score_type_dict.items(): | |
result[q_type]["gpt4_score"] = util.get_avg(score_dict[1]) | |
result[q_type]["pred_score"] = util.get_avg(score_dict[2]) | |
result[q_type]["pred_relative_score"] = ( | |
util.get_avg([float(s2) / float(s1) for s1, s2 in zip(score_dict[1], score_dict[2])]) | |
* 100 | |
) | |
result[q_type]["data_size"] = len(score_dict[1]) | |
df = pd.DataFrame.from_dict(result).filter( | |
[ | |
"conversation", | |
"detailed_description", | |
"chest_xray", | |
"mri", | |
"histology", | |
"gross", | |
"ct_scan", | |
"overall", | |
] | |
) | |
print(df) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser("GPT-4 Multimodal Chat Eval Postprocessing", add_help=True) | |
parser.add_argument( | |
"--scores-file", default="", metavar="FILE", help="input path to gpt-4 score file" | |
) | |
args = parser.parse_args() | |
main(args) | |