Spaces:
Sleeping
Sleeping
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig | |
import torch | |
from medrax.llava.model import LlavaMistralForCausalLM | |
from medrax.llava.constants import ( | |
DEFAULT_IMAGE_PATCH_TOKEN, | |
DEFAULT_IM_START_TOKEN, | |
DEFAULT_IM_END_TOKEN, | |
) | |
def load_pretrained_model( | |
model_path, | |
model_base, | |
model_name, | |
load_in_8bit=False, | |
load_in_4bit=True, | |
device="cuda", | |
cache_dir: str = "/model-weights", | |
low_cpu_mem_usage=True, | |
torch_dtype=torch.bfloat16, | |
): | |
kwargs = {} | |
if device != "cuda": | |
kwargs["device_map"] = {"": device} | |
# else: | |
# kwargs["device_map"] = "auto" | |
if load_in_8bit: | |
kwargs["load_in_8bit"] = True | |
elif load_in_4bit: | |
# kwargs["load_in_4bit"] = True | |
kwargs["quantization_config"] = BitsAndBytesConfig( | |
load_in_4bit=True, | |
bnb_4bit_compute_dtype=torch_dtype, | |
bnb_4bit_use_double_quant=True, | |
bnb_4bit_quant_type="nf4", | |
) | |
# else: | |
# kwargs["torch_dtype"] = torch_dtype | |
if "llava" in model_name.lower(): | |
# Load LLaVA model | |
if "mistral" in model_name.lower(): | |
tokenizer = AutoTokenizer.from_pretrained(model_path, cache_dir=cache_dir) | |
model = LlavaMistralForCausalLM.from_pretrained( | |
model_path, | |
low_cpu_mem_usage=low_cpu_mem_usage, | |
use_flash_attention_2=False, | |
cache_dir=cache_dir, | |
torch_dtype=torch_dtype, | |
**kwargs, | |
) | |
else: | |
# Load language model | |
if model_base is not None: | |
# PEFT model | |
from peft import PeftModel | |
tokenizer = AutoTokenizer.from_pretrained( | |
model_base, use_fast=False, cache_dir=cache_dir | |
) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_base, | |
low_cpu_mem_usage=True, | |
cache_dir=cache_dir, | |
torch_dtype=torch_dtype, | |
**kwargs, | |
) | |
print(f"Loading LoRA weights from {model_path}") | |
model = PeftModel.from_pretrained(model, model_path) | |
print("Merging weights") | |
model = model.merge_and_unload() | |
print("Convert to FP16...") | |
model.to(torch_dtype) | |
else: | |
use_fast = False | |
if "mpt" in model_name.lower(): | |
tokenizer = AutoTokenizer.from_pretrained( | |
model_path, use_fast=True, cache_dir=cache_dir | |
) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_path, | |
low_cpu_mem_usage=True, | |
trust_remote_code=True, | |
cache_dir=cache_dir, | |
torch_dtype=torch_dtype, | |
**kwargs, | |
) | |
else: | |
tokenizer = AutoTokenizer.from_pretrained( | |
model_path, use_fast=False, cache_dir=cache_dir | |
) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_path, | |
low_cpu_mem_usage=True, | |
cache_dir=cache_dir, | |
torch_dtype=torch_dtype, | |
**kwargs, | |
) | |
image_processor = None | |
if "llava" in model_name.lower(): # or 'mistral' in model_name.lower(): | |
mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False) | |
mm_use_im_patch_token = getattr(model.config, "mm_use_im_patch_token", True) | |
if mm_use_im_patch_token: | |
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) | |
if mm_use_im_start_end: | |
tokenizer.add_tokens( | |
[DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True | |
) | |
model.resize_token_embeddings(len(tokenizer)) | |
vision_tower = model.get_vision_tower() | |
if not vision_tower.is_loaded: | |
vision_tower.load_model() | |
vision_tower.to(device=device, dtype=torch_dtype) | |
model.model.mm_projector.to(device=device, dtype=torch_dtype) | |
if not (load_in_4bit or load_in_8bit): | |
model.to(device=device, dtype=torch_dtype) | |
image_processor = vision_tower.image_processor | |
if hasattr(model.config, "max_sequence_length"): | |
context_len = model.config.max_sequence_length | |
else: | |
context_len = 2048 | |
return tokenizer, model, image_processor, context_len | |