Spaces:
Runtime error
Runtime error
| from transformers import BlenderbotTokenizer, BlenderbotForConditionalGeneration | |
| import torch | |
| import gradio as gr | |
| import os | |
| import csv | |
| from gradio import inputs, outputs | |
| from datetime import datetime | |
| import fastapi | |
| from typing import List, Dict | |
| import httpx | |
| import pandas as pd | |
| import datasets as ds | |
| UseMemory=True | |
| HF_TOKEN=os.environ.get("HF_TOKEN") | |
| def SaveResult(text, outputfileName): | |
| basedir = os.path.dirname(__file__) | |
| savePath = outputfileName | |
| print("Saving: " + text + " to " + savePath) | |
| from os.path import exists | |
| file_exists = exists(savePath) | |
| if file_exists: | |
| with open(outputfileName, "a") as f: #append | |
| f.write(str(text.replace("\n"," "))) | |
| f.write('\n') | |
| else: | |
| with open(outputfileName, "w") as f: #write | |
| f.write(str("time, message, text\n")) # one time only to get column headers for CSV file | |
| f.write(str(text.replace("\n"," "))) | |
| f.write('\n') | |
| return | |
| def store_message(name: str, message: str, outputfileName: str): | |
| basedir = os.path.dirname(__file__) | |
| savePath = outputfileName | |
| # if file doesnt exist, create it with labels | |
| from os.path import exists | |
| file_exists = exists(savePath) | |
| if (file_exists==False): | |
| with open(outputfileName, "w") as f: #write | |
| f.write(str("time, message, text\n")) # one time only to get column headers for CSV file | |
| if name and message: | |
| with open(savePath, "a") as csvfile: | |
| writer = csv.DictWriter(csvfile, fieldnames=[ "time", "message", "name", ]) | |
| writer.writerow( | |
| {"time": str(datetime.now()), "message": message.strip(), "name": name.strip() } | |
| ) | |
| df = pd.read_csv(savePath) | |
| df = df.sort_values(df.columns[0],ascending=False) | |
| return df | |
| mname = "facebook/blenderbot-400M-distill" | |
| model = BlenderbotForConditionalGeneration.from_pretrained(mname) | |
| tokenizer = BlenderbotTokenizer.from_pretrained(mname) | |
| def take_last_tokens(inputs, note_history, history): | |
| if inputs['input_ids'].shape[1] > 128: | |
| inputs['input_ids'] = torch.tensor([inputs['input_ids'][0][-128:].tolist()]) | |
| inputs['attention_mask'] = torch.tensor([inputs['attention_mask'][0][-128:].tolist()]) | |
| note_history = ['</s> <s>'.join(note_history[0].split('</s> <s>')[2:])] | |
| history = history[1:] | |
| return inputs, note_history, history | |
| def add_note_to_history(note, note_history):# good example of non async since we wait around til we know it went okay. | |
| note_history.append(note) | |
| note_history = '</s> <s>'.join(note_history) | |
| return [note_history] | |
| title = "💬ChatBack🧠💾" | |
| description = """Chatbot With persistent memory dataset allowing multiagent system AI to access a shared dataset as memory pool with stored interactions. | |
| Current Best SOTA Chatbot: https://huggingface.co/facebook/blenderbot-400M-distill?text=Hey+my+name+is+ChatBack%21+Are+you+ready+to+rock%3F """ | |
| def get_base(filename): | |
| basedir = os.path.dirname(__file__) | |
| loadPath = basedir + "\\" + filename | |
| return loadPath | |
| def chat(message, history): | |
| history = history or [] | |
| if history: | |
| history_useful = ['</s> <s>'.join([str(a[0])+'</s> <s>'+str(a[1]) for a in history])] | |
| else: | |
| history_useful = [] | |
| history_useful = add_note_to_history(message, history_useful) | |
| inputs = tokenizer(history_useful, return_tensors="pt") | |
| inputs, history_useful, history = take_last_tokens(inputs, history_useful, history) | |
| reply_ids = model.generate(**inputs) | |
| response = tokenizer.batch_decode(reply_ids, skip_special_tokens=True)[0] | |
| history_useful = add_note_to_history(response, history_useful) | |
| list_history = history_useful[0].split('</s> <s>') | |
| history.append((list_history[-2], list_history[-1])) | |
| df=pd.DataFrame() | |
| if UseMemory: | |
| outputfileName = 'ChatbotMemory.csv' | |
| df = store_message(message, response, outputfileName) # Save to dataset | |
| basedir = get_base(outputfileName) | |
| return history, df, basedir | |
| with gr.Blocks() as demo: | |
| gr.Markdown("<h1><center>🍰Gradio chatbot backed by dataframe CSV memory🎨</center></h1>") | |
| with gr.Row(): | |
| t1 = gr.Textbox(lines=1, default="", label="Chat Text:") | |
| b1 = gr.Button("Respond and Retrieve Messages") | |
| with gr.Row(): # inputs and buttons | |
| s1 = gr.State([]) | |
| df1 = gr.Dataframe(wrap=True, max_rows=1000, overflow_row_behaviour= "paginate") | |
| with gr.Row(): # inputs and buttons | |
| file = gr.File(label="File") | |
| s2 = gr.Markdown() | |
| b1.click(fn=chat, inputs=[t1, s1], outputs=[s1, df1, file]) | |
| demo.launch(debug=True, show_error=True) |