import matplotlib.pyplot as plt import matplotlib.colors as mcolors import numpy as np import cv2 def individual_channel_image(img_arr, channel= 'r', ax=None): img_arr = img_arr[:,:,0:3] if channel in ['r','red','Red']: plot_arr = img_arr[:,:,0] channel_name = 'Red' cmap = 'Reds' if channel in ['g','green','Green']: plot_arr = img_arr[:,:,1] channel_name = 'Green' cmap = 'Greens' if channel in ['b','blue','Blue']: plot_arr = img_arr[:,:,2] channel_name = 'Blue' cmap = 'Blues' if channel not in ['r','red','Red','g','green','Green','b','blue','Blue']: plot_arr = img_arr channel_name = 'Original' if ax is None: if channel_name == 'Original': # plt.imshow(cv2.cvtColor(img_arr,cv2.COLOR_BGR2RGB)) plt.imshow(cv2.cvtColor(np.flip(img_arr,axis=-1),cv2.COLOR_BGR2RGB)) else: plt.imshow(plot_arr, cmap = cmap) plt.colorbar(orientation= 'vertical', shrink = 0.7, pad = 0.01, fraction = 0.046,) plt.title('Image in the {} channel'.format(channel_name)) plt.show() if ax is not None: if channel_name == 'Original': # ax.imshow(cv2.cvtColor(img_arr,cv2.COLOR_BGR2RGB)) ax.imshow(cv2.cvtColor(np.flip(img_arr, axis=-1),cv2.COLOR_BGR2RGB)) # ax.imshow(cv2.cvtColor(img_arr,cv2.COLOR_RGB2BGR)) else: plot = ax.imshow(plot_arr, cmap = cmap) plt.colorbar(plot, orientation= 'vertical', ax = ax, fraction = 0.046,) # plt.colorbar(orientiation= 'vertical', shrink = 0.7, pad = 0.1) ax.set_title('Image in the {} channel'.format(channel_name)) def individual_channel_image_final(img_arr, channel='Red'): if channel in ['Red','Green','Blue']: fig, ax = plt.subplots(figsize = (15,10)) individual_channel_image(img_arr, channel= channel) plt.tight_layout() plt.show() fig.canvas.draw() image_array = np.array(fig.canvas.renderer.buffer_rgba()) return image_array if channel in ['All']: fig, ax = plt.subplots(2,2, figsize = (12,10)) individual_channel_image(img_arr, channel='r', ax=ax[0,0]) individual_channel_image(img_arr, channel='g', ax=ax[0,1]) individual_channel_image(img_arr, channel='b', ax=ax[1,0]) individual_channel_image(img_arr, channel='full', ax=ax[1,1]) plt.tight_layout() plt.show() fig.canvas.draw() image_array = np.array(fig.canvas.renderer.buffer_rgba()) plt.close(fig) return image_array def channel_distribution_plotter(img_array): img_array = img_array[:,:,:3] #Not considering the A channel, if it's a RGBA image. fig, ax = plt.subplots(figsize=(8,8)) plt.yticks([]) plt.xticks([]) plt.subplot(2,2,1) plt.hist(img_array[:,:,0].ravel(),bins=256,color='red'); plt.title("Red Channel") plt.subplot(2,2,2) plt.hist(img_array[:,:,1].ravel(),bins=256,color='green'); plt.title("Green Channel") plt.subplot(2,2,3) plt.hist(img_array[:,:,2].ravel(),bins=256,color='blue'); plt.title("Blue Channel") plt.subplot(2,2,4) plt.imshow(cv2.cvtColor(np.flip(img_array, axis=-1),cv2.COLOR_BGR2RGB)) # plt.imshow(cv2.cvtColor(img_array,cv2.COLOR_RGB2BGR)) plt.title("Original Image") plt.suptitle("Pixel values distribution in each channel\nx-axis: pixel values, y-axis: number of pixels") plt.tight_layout() plt.show() fig.canvas.draw() image_array = np.array(fig.canvas.renderer.buffer_rgba()) return image_array def which_channel_dominates(img_arr, original_image_plot = 'yes', original_image_opacity = 0.3, channel_opacity = 0.7): cmap = mcolors.ListedColormap(['red', 'green', 'blue', 'white', 'black', 'gray']) img_arr = img_arr[:,:,:3] red_channel = img_arr[:,:,0] green_channel = img_arr[:,:,1] blue_channel = img_arr[:,:,2] print("Red channel max. = ", np.max(red_channel), "Green max. = ", np.max(green_channel), "Blue max. = ",np.max(blue_channel)) which_channel_dominates = np.zeros((img_arr.shape[0],img_arr.shape[1])) red_greater_green = np.greater(red_channel,green_channel) red_greater_blue = np.greater(red_channel,blue_channel) green_greater_blue = np.greater(green_channel,blue_channel) #Red is greatest if red is greater than green and blue which_channel_dominates[(red_greater_green & red_greater_blue)] = 1 which_channel_dominates[green_greater_blue & (~red_greater_green)] = 2 which_channel_dominates[~green_greater_blue & (~red_greater_blue)] = 3 which_channel_dominates[(red_channel == green_channel) & (red_channel == blue_channel)] = 6 which_channel_dominates[(red_channel == 255) & (blue_channel == 255) & (green_channel == 255)] = 4 which_channel_dominates[(red_channel == 0) & (blue_channel == 0) & (green_channel == 0)] = 5 print("Unique elements of channel dominat array are: - ",np.unique(which_channel_dominates)) #Map the color code to the image fig, ax = plt.subplots(figsize=(8,8)) if original_image_plot == 'yes': plt.imshow(cv2.cvtColor(np.flip(img_arr, axis=-1),cv2.COLOR_BGR2RGB), alpha=original_image_opacity) plot = plt.imshow(which_channel_dominates, cmap=cmap, alpha=channel_opacity) #Customize the ticks of the colorbar plt.colorbar(plot, orientation='vertical', ticks = [], fraction=0.032, pad=0.04, label='Dominant Color Channel' ) text = "Which channel dominates in the image below?\nWhite : R=G=B=255, Black : R=G=B=0\nGray : 0 < R=G=B< 255" plt.title(text) fig.canvas.draw() # plt.plot() image_array = np.array(fig.canvas.renderer.buffer_rgba()) return image_array