|
import matplotlib.pyplot as plt |
|
import numpy as np |
|
import math as mt |
|
|
|
def reflect_vector(v, n): |
|
n = n / np.linalg.norm(n) |
|
return v - 2 * np.dot(v, n) * n |
|
def quad_solver(a, b, c): |
|
det = b**2 - 4*a*c |
|
if det < 0: |
|
raise ValueError("No real roots") |
|
elif det == 0: |
|
return -b / (2*a), -b / (2*a) |
|
else: |
|
return (-b - mt.sqrt(det)) / (2*a), (-b + mt.sqrt(det)) / (2*a) |
|
|
|
def plot_reflection_on_circle(ax, angle, center, radius, ray_length=50, color='blue'): |
|
a, b = center |
|
origin = np.array([0, 0]) |
|
dx = np.cos(angle) |
|
dy = np.sin(angle) |
|
|
|
A = dx**2 + dy**2 |
|
B = -2 * (a * dx + b * dy) |
|
C = a**2 + b**2 - radius**2 |
|
|
|
roots = np.roots([A, B, C]) |
|
ts = [t for t in roots if t > 0] |
|
if not ts: |
|
print(f"No intersection at angle {angle}") |
|
return |
|
|
|
t_hit = min(ts) |
|
x_hit = t_hit * dx |
|
y_hit = t_hit * dy |
|
hit_point = np.array([x_hit, y_hit]) |
|
|
|
ax.plot([0, x_hit], [0, y_hit], color='blue', lw=1, zorder=10) |
|
|
|
normal_vector = hit_point - np.array([a, b]) |
|
|
|
|
|
|
|
incident_vector = hit_point - origin |
|
reflected_vector = reflect_vector(incident_vector, normal_vector) |
|
reflected_unit = 1000* reflected_vector / np.linalg.norm(reflected_vector) |
|
|
|
ax.arrow(x_hit, y_hit, |
|
reflected_unit[0] * ray_length, |
|
reflected_unit[1] * ray_length, |
|
head_width=1.8, head_length=1.5, |
|
fc=color, ec=color, zorder=10) |
|
|
|
return incident_vector, reflected_vector |
|
|
|
|
|
|
|
def reflecting_plotter(a = 20, b = 20, r = 15, ray_count = 15, clutter = "No"): |
|
max_dim = max(abs(a), abs(b), r) * 3 |
|
fig, ax = plt.subplots() |
|
ax.set_xlim(-max_dim, max_dim) |
|
ax.set_ylim(-max_dim, max_dim) |
|
ax.set_aspect('equal', adjustable='box') |
|
ax.set_xlabel('X-axis') |
|
ax.set_ylabel('Y-axis') |
|
ax.axhline(0, color='black', lw=1) |
|
ax.axvline(0, color='black', lw=1) |
|
|
|
circle = plt.Circle((a, b), r, color='black', fill=False) |
|
ax.add_artist(circle) |
|
ax.plot(a, b, 'ro', markersize=5) |
|
|
|
def inside_circle_plotter(): |
|
"""Function to plot the rays inside the circle""" |
|
increment = 2 * mt.pi / ray_count |
|
|
|
for angle in np.arange(0, 2 * mt.pi, increment): |
|
dx = mt.cos(angle) |
|
dy = mt.sin(angle) |
|
|
|
A = dx**2 + dy**2 |
|
B = -2 * (a * dx + b * dy) |
|
C = a**2 + b**2 - r**2 |
|
|
|
try: |
|
t1, t2 = quad_solver(A, B, C) |
|
|
|
valid_ts = [t for t in (t1, t2) if t > 0] |
|
if not valid_ts: |
|
continue |
|
t_hit = min(valid_ts) |
|
|
|
x = [0, t_hit * dx] |
|
y = [0, t_hit * dy] |
|
ax.plot(x, y, color='orange', lw=1) |
|
except ValueError: |
|
continue |
|
|
|
theta_center = mt.atan2(b, a) |
|
d = mt.hypot(a, b) |
|
|
|
try: |
|
delta = mt.asin(r / d) |
|
except: |
|
inside_circle_plotter() |
|
ax.set_title(f'Rays origin - (0,0). From inside a perfectly reflective circle\nCenter-({a},{b}), Radius-{r}') |
|
plt.grid(True) |
|
plt.show() |
|
|
|
fig.canvas.draw() |
|
image_array = np.array(fig.canvas.renderer.buffer_rgba()) |
|
plt.close(fig) |
|
return image_array, 100 |
|
|
|
|
|
|
|
lower_angle = theta_center - delta |
|
upper_angle = theta_center + delta |
|
|
|
def normalize(angle): |
|
return angle % (2 * mt.pi) |
|
|
|
lower_angle = normalize(lower_angle) |
|
upper_angle = normalize(upper_angle) |
|
|
|
def is_angle_between(angle, start, end): |
|
angle = normalize(angle) |
|
start = normalize(start) |
|
end = normalize(end) |
|
if start < end: |
|
return start <= angle <= end |
|
else: |
|
return angle >= start or angle <= end |
|
|
|
|
|
def draw_line(angle, length=max(max_dim, 500), x_0=0, y_0=0): |
|
x_1 = length * mt.cos(angle) + x_0 |
|
y_1 = length * mt.sin(angle) + y_0 |
|
return [x_0, x_1], [y_0, y_1] |
|
|
|
increment = 2*mt.pi/ray_count |
|
total_hits = 0 |
|
for angle in np.arange(0, 2 * np.pi, increment): |
|
|
|
|
|
if is_angle_between(angle, lower_angle, upper_angle): |
|
total_hits += 1 |
|
plot_reflection_on_circle(ax, angle, center=(a, b), radius=r) |
|
|
|
else: |
|
if clutter == "No": |
|
x, y = draw_line(angle) |
|
ax.plot(x, y, color='red', lw=1, zorder=5) |
|
|
|
ax.set_title(f'Rays with shadow from a perfectly reflective circle,\nCenter-({a},{b}), Radius-{r}') |
|
plt.grid(True) |
|
plt.show() |
|
fig.canvas.draw() |
|
image_array = np.array(fig.canvas.renderer.buffer_rgba()) |
|
plt.close(fig) |
|
|
|
hit_ratio = 100*total_hits / ray_count |
|
return image_array, f"{hit_ratio:.5f}" |