Ray-tracing-simulation / backend /reflecting_ray_tracing.py
DebasishDhal99's picture
Add center and axes in reflective, fix edge case in non-refletive
66b2203
import matplotlib.pyplot as plt
import numpy as np
import math as mt
def reflect_vector(v, n):
n = n / np.linalg.norm(n)
return v - 2 * np.dot(v, n) * n
def quad_solver(a, b, c):
det = b**2 - 4*a*c
if det < 0:
raise ValueError("No real roots")
elif det == 0:
return -b / (2*a), -b / (2*a)
else:
return (-b - mt.sqrt(det)) / (2*a), (-b + mt.sqrt(det)) / (2*a)
def plot_reflection_on_circle(ax, angle, center, radius, ray_length=50, color='blue'):
a, b = center
origin = np.array([0, 0])
dx = np.cos(angle)
dy = np.sin(angle)
A = dx**2 + dy**2
B = -2 * (a * dx + b * dy)
C = a**2 + b**2 - radius**2
roots = np.roots([A, B, C])
ts = [t for t in roots if t > 0]
if not ts:
print(f"No intersection at angle {angle}")
return
t_hit = min(ts)
x_hit = t_hit * dx
y_hit = t_hit * dy
hit_point = np.array([x_hit, y_hit])
ax.plot([0, x_hit], [0, y_hit], color='blue', lw=1, zorder=10) # This is the incident ray
normal_vector = hit_point - np.array([a, b]) #Normal at point of reflection
# ax.plot([a, x_hit], [b, y_hit], color='green', lw=1)
# Reflection, this is key
incident_vector = hit_point - origin
reflected_vector = reflect_vector(incident_vector, normal_vector)
reflected_unit = 1000* reflected_vector / np.linalg.norm(reflected_vector)
ax.arrow(x_hit, y_hit,
reflected_unit[0] * ray_length,
reflected_unit[1] * ray_length,
head_width=1.8, head_length=1.5,
fc=color, ec=color, zorder=10)
return incident_vector, reflected_vector
def reflecting_plotter(a = 20, b = 20, r = 15, ray_count = 15, clutter = "No"):
max_dim = max(abs(a), abs(b), r) * 3
fig, ax = plt.subplots()
ax.set_xlim(-max_dim, max_dim)
ax.set_ylim(-max_dim, max_dim)
ax.set_aspect('equal', adjustable='box')
ax.set_xlabel('X-axis')
ax.set_ylabel('Y-axis')
ax.axhline(0, color='black', lw=1)
ax.axvline(0, color='black', lw=1)
circle = plt.Circle((a, b), r, color='black', fill=False)
ax.add_artist(circle)
ax.plot(a, b, 'ro', markersize=5)
def inside_circle_plotter():
"""Function to plot the rays inside the circle"""
increment = 2 * mt.pi / ray_count
for angle in np.arange(0, 2 * mt.pi, increment):
dx = mt.cos(angle)
dy = mt.sin(angle)
A = dx**2 + dy**2
B = -2 * (a * dx + b * dy)
C = a**2 + b**2 - r**2
try:
t1, t2 = quad_solver(A, B, C)
valid_ts = [t for t in (t1, t2) if t > 0]
if not valid_ts:
continue
t_hit = min(valid_ts)
x = [0, t_hit * dx]
y = [0, t_hit * dy]
ax.plot(x, y, color='orange', lw=1)
except ValueError:
continue
theta_center = mt.atan2(b, a)
d = mt.hypot(a, b)
try:
delta = mt.asin(r / d)
except:
inside_circle_plotter()
ax.set_title(f'Rays origin - (0,0). From inside a perfectly reflective circle\nCenter-({a},{b}), Radius-{r}')
plt.grid(True)
plt.show()
fig.canvas.draw()
image_array = np.array(fig.canvas.renderer.buffer_rgba())
plt.close(fig)
return image_array, 100
# raise ValueError("Circle radius is too large for the given center coordinates.")
lower_angle = theta_center - delta
upper_angle = theta_center + delta
def normalize(angle):
return angle % (2 * mt.pi)
lower_angle = normalize(lower_angle)
upper_angle = normalize(upper_angle)
def is_angle_between(angle, start, end):
angle = normalize(angle)
start = normalize(start)
end = normalize(end)
if start < end:
return start <= angle <= end
else:
return angle >= start or angle <= end
# Function to generate a line from origin at a given angle
def draw_line(angle, length=max(max_dim, 500), x_0=0, y_0=0):
x_1 = length * mt.cos(angle) + x_0
y_1 = length * mt.sin(angle) + y_0
return [x_0, x_1], [y_0, y_1]
increment = 2*mt.pi/ray_count
total_hits = 0
for angle in np.arange(0, 2 * np.pi, increment):
# dx = mt.cos(angle)
# dy = mt.sin(angle)
if is_angle_between(angle, lower_angle, upper_angle):
total_hits += 1
plot_reflection_on_circle(ax, angle, center=(a, b), radius=r)
else:
if clutter == "No":
x, y = draw_line(angle)
ax.plot(x, y, color='red', lw=1, zorder=5)
# plot_reflection_on_circle(ax, angle, center=(a, b), radius=r)
ax.set_title(f'Rays with shadow from a perfectly reflective circle,\nCenter-({a},{b}), Radius-{r}')
plt.grid(True)
plt.show()
fig.canvas.draw()
image_array = np.array(fig.canvas.renderer.buffer_rgba())
plt.close(fig)
hit_ratio = 100*total_hits / ray_count
return image_array, f"{hit_ratio:.5f}"