import matplotlib.pyplot as plt import numpy as np import math as mt def reflect_vector(v, n): n = n / np.linalg.norm(n) return v - 2 * np.dot(v, n) * n def quad_solver(a, b, c): det = b**2 - 4*a*c if det < 0: raise ValueError("No real roots") elif det == 0: return -b / (2*a), -b / (2*a) else: return (-b - mt.sqrt(det)) / (2*a), (-b + mt.sqrt(det)) / (2*a) def plot_reflection_on_circle(ax, angle, center, radius, ray_length=50, color='blue'): a, b = center origin = np.array([0, 0]) dx = np.cos(angle) dy = np.sin(angle) A = dx**2 + dy**2 B = -2 * (a * dx + b * dy) C = a**2 + b**2 - radius**2 roots = np.roots([A, B, C]) ts = [t for t in roots if t > 0] if not ts: print(f"No intersection at angle {angle}") return t_hit = min(ts) x_hit = t_hit * dx y_hit = t_hit * dy hit_point = np.array([x_hit, y_hit]) ax.plot([0, x_hit], [0, y_hit], color='blue', lw=1, zorder=10) # This is the incident ray normal_vector = hit_point - np.array([a, b]) #Normal at point of reflection # ax.plot([a, x_hit], [b, y_hit], color='green', lw=1) # Reflection, this is key incident_vector = hit_point - origin reflected_vector = reflect_vector(incident_vector, normal_vector) reflected_unit = 1000* reflected_vector / np.linalg.norm(reflected_vector) ax.arrow(x_hit, y_hit, reflected_unit[0] * ray_length, reflected_unit[1] * ray_length, head_width=1.8, head_length=1.5, fc=color, ec=color, zorder=10) return incident_vector, reflected_vector def reflecting_plotter(a = 20, b = 20, r = 15, ray_count = 15, clutter = "No"): max_dim = max(abs(a), abs(b), r) * 3 fig, ax = plt.subplots() ax.set_xlim(-max_dim, max_dim) ax.set_ylim(-max_dim, max_dim) ax.set_aspect('equal', adjustable='box') ax.set_xlabel('X-axis') ax.set_ylabel('Y-axis') ax.axhline(0, color='black', lw=1) ax.axvline(0, color='black', lw=1) circle = plt.Circle((a, b), r, color='black', fill=False) ax.add_artist(circle) ax.plot(a, b, 'ro', markersize=5) def inside_circle_plotter(): """Function to plot the rays inside the circle""" increment = 2 * mt.pi / ray_count for angle in np.arange(0, 2 * mt.pi, increment): dx = mt.cos(angle) dy = mt.sin(angle) A = dx**2 + dy**2 B = -2 * (a * dx + b * dy) C = a**2 + b**2 - r**2 try: t1, t2 = quad_solver(A, B, C) valid_ts = [t for t in (t1, t2) if t > 0] if not valid_ts: continue t_hit = min(valid_ts) x = [0, t_hit * dx] y = [0, t_hit * dy] ax.plot(x, y, color='orange', lw=1) except ValueError: continue theta_center = mt.atan2(b, a) d = mt.hypot(a, b) try: delta = mt.asin(r / d) except: inside_circle_plotter() ax.set_title(f'Rays origin - (0,0). From inside a perfectly reflective circle\nCenter-({a},{b}), Radius-{r}') plt.grid(True) plt.show() fig.canvas.draw() image_array = np.array(fig.canvas.renderer.buffer_rgba()) plt.close(fig) return image_array, 100 # raise ValueError("Circle radius is too large for the given center coordinates.") lower_angle = theta_center - delta upper_angle = theta_center + delta def normalize(angle): return angle % (2 * mt.pi) lower_angle = normalize(lower_angle) upper_angle = normalize(upper_angle) def is_angle_between(angle, start, end): angle = normalize(angle) start = normalize(start) end = normalize(end) if start < end: return start <= angle <= end else: return angle >= start or angle <= end # Function to generate a line from origin at a given angle def draw_line(angle, length=max(max_dim, 500), x_0=0, y_0=0): x_1 = length * mt.cos(angle) + x_0 y_1 = length * mt.sin(angle) + y_0 return [x_0, x_1], [y_0, y_1] increment = 2*mt.pi/ray_count total_hits = 0 for angle in np.arange(0, 2 * np.pi, increment): # dx = mt.cos(angle) # dy = mt.sin(angle) if is_angle_between(angle, lower_angle, upper_angle): total_hits += 1 plot_reflection_on_circle(ax, angle, center=(a, b), radius=r) else: if clutter == "No": x, y = draw_line(angle) ax.plot(x, y, color='red', lw=1, zorder=5) # plot_reflection_on_circle(ax, angle, center=(a, b), radius=r) ax.set_title(f'Rays with shadow from a perfectly reflective circle,\nCenter-({a},{b}), Radius-{r}') plt.grid(True) plt.show() fig.canvas.draw() image_array = np.array(fig.canvas.renderer.buffer_rgba()) plt.close(fig) hit_ratio = 100*total_hits / ray_count return image_array, f"{hit_ratio:.5f}"