Spaces:
Build error
Build error
Michael Hu
commited on
Commit
·
7495571
1
Parent(s):
37aaac6
refactor tts module
Browse files- .vercel/project.json +1 -0
- dia/__init__.py +0 -0
- dia/audio.py +0 -185
- dia/config.py +0 -187
- dia/layers.py +0 -624
- dia/model.py +0 -455
- dia/state.py +0 -207
- dia_app_gradio.py +0 -378
- utils/tts.py +97 -44
- utils/tts_README.md +64 -0
- utils/tts_base.py +47 -69
- utils/tts_cascading.py +0 -112
- utils/tts_cosyvoice2.py +194 -0
- utils/tts_dia.py +178 -106
- utils/tts_dia_space.py +0 -154
- utils/tts_engines.py +0 -419
- utils/tts_factory.py +0 -77
- utils/tts_kokoro.py +123 -81
- utils/tts_kokoro_space.py +0 -100
.vercel/project.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"projectName":"trae_5altap2j"}
|
dia/__init__.py
DELETED
File without changes
|
dia/audio.py
DELETED
@@ -1,185 +0,0 @@
|
|
1 |
-
import typing as tp
|
2 |
-
|
3 |
-
import torch
|
4 |
-
|
5 |
-
|
6 |
-
def build_delay_indices(B: int, T: int, C: int, delay_pattern: tp.List[int]) -> tp.Tuple[torch.Tensor, torch.Tensor]:
|
7 |
-
"""
|
8 |
-
Precompute (t_idx_BxTxC, indices_BTCx3) so that out[t, c] = in[t - delay[c], c].
|
9 |
-
Negative t_idx => BOS; t_idx >= T => PAD.
|
10 |
-
"""
|
11 |
-
delay_arr = torch.tensor(delay_pattern, dtype=torch.int32)
|
12 |
-
|
13 |
-
t_idx_BxT = torch.broadcast_to(
|
14 |
-
torch.arange(T, dtype=torch.int32)[None, :],
|
15 |
-
[B, T],
|
16 |
-
)
|
17 |
-
t_idx_BxTx1 = t_idx_BxT[..., None]
|
18 |
-
t_idx_BxTxC = t_idx_BxTx1 - delay_arr.view(1, 1, C)
|
19 |
-
|
20 |
-
b_idx_BxTxC = torch.broadcast_to(
|
21 |
-
torch.arange(B, dtype=torch.int32).view(B, 1, 1),
|
22 |
-
[B, T, C],
|
23 |
-
)
|
24 |
-
c_idx_BxTxC = torch.broadcast_to(
|
25 |
-
torch.arange(C, dtype=torch.int32).view(1, 1, C),
|
26 |
-
[B, T, C],
|
27 |
-
)
|
28 |
-
|
29 |
-
# We must clamp time indices to [0..T-1] so gather_nd equivalent won't fail
|
30 |
-
t_clamped_BxTxC = torch.clamp(t_idx_BxTxC, 0, T - 1)
|
31 |
-
|
32 |
-
indices_BTCx3 = torch.stack(
|
33 |
-
[
|
34 |
-
b_idx_BxTxC.reshape(-1),
|
35 |
-
t_clamped_BxTxC.reshape(-1),
|
36 |
-
c_idx_BxTxC.reshape(-1),
|
37 |
-
],
|
38 |
-
dim=1,
|
39 |
-
).long() # Ensure indices are long type for indexing
|
40 |
-
|
41 |
-
return t_idx_BxTxC, indices_BTCx3
|
42 |
-
|
43 |
-
|
44 |
-
def apply_audio_delay(
|
45 |
-
audio_BxTxC: torch.Tensor,
|
46 |
-
pad_value: int,
|
47 |
-
bos_value: int,
|
48 |
-
precomp: tp.Tuple[torch.Tensor, torch.Tensor],
|
49 |
-
) -> torch.Tensor:
|
50 |
-
"""
|
51 |
-
Applies the delay pattern to batched audio tokens using precomputed indices,
|
52 |
-
inserting BOS where t_idx < 0 and PAD where t_idx >= T.
|
53 |
-
|
54 |
-
Args:
|
55 |
-
audio_BxTxC: [B, T, C] int16 audio tokens (or int32/float)
|
56 |
-
pad_value: the padding token
|
57 |
-
bos_value: the BOS token
|
58 |
-
precomp: (t_idx_BxTxC, indices_BTCx3) from build_delay_indices
|
59 |
-
|
60 |
-
Returns:
|
61 |
-
result_BxTxC: [B, T, C] delayed audio tokens
|
62 |
-
"""
|
63 |
-
device = audio_BxTxC.device # Get device from input tensor
|
64 |
-
t_idx_BxTxC, indices_BTCx3 = precomp
|
65 |
-
t_idx_BxTxC = t_idx_BxTxC.to(device) # Move precomputed indices to device
|
66 |
-
indices_BTCx3 = indices_BTCx3.to(device)
|
67 |
-
|
68 |
-
# Equivalent of tf.gather_nd using advanced indexing
|
69 |
-
# Ensure indices are long type if not already (build_delay_indices should handle this)
|
70 |
-
gathered_flat = audio_BxTxC[indices_BTCx3[:, 0], indices_BTCx3[:, 1], indices_BTCx3[:, 2]]
|
71 |
-
gathered_BxTxC = gathered_flat.view(audio_BxTxC.shape)
|
72 |
-
|
73 |
-
# Create masks on the correct device
|
74 |
-
mask_bos = t_idx_BxTxC < 0 # => place bos_value
|
75 |
-
mask_pad = t_idx_BxTxC >= audio_BxTxC.shape[1] # => place pad_value
|
76 |
-
|
77 |
-
# Create scalar tensors on the correct device
|
78 |
-
bos_tensor = torch.tensor(bos_value, dtype=audio_BxTxC.dtype, device=device)
|
79 |
-
pad_tensor = torch.tensor(pad_value, dtype=audio_BxTxC.dtype, device=device)
|
80 |
-
|
81 |
-
# If mask_bos, BOS; else if mask_pad, PAD; else original gather
|
82 |
-
# All tensors should now be on the same device
|
83 |
-
result_BxTxC = torch.where(mask_bos, bos_tensor, torch.where(mask_pad, pad_tensor, gathered_BxTxC))
|
84 |
-
|
85 |
-
return result_BxTxC
|
86 |
-
|
87 |
-
|
88 |
-
def build_revert_indices(B: int, T: int, C: int, delay_pattern: tp.List[int]) -> tp.Tuple[torch.Tensor, torch.Tensor]:
|
89 |
-
"""
|
90 |
-
Precompute indices for the revert operation using PyTorch.
|
91 |
-
|
92 |
-
Returns:
|
93 |
-
A tuple (t_idx_BxTxC, indices_BTCx3) where:
|
94 |
-
- t_idx_BxTxC is a tensor of shape [B, T, C] computed as time indices plus the delay.
|
95 |
-
- indices_BTCx3 is a tensor of shape [B*T*C, 3] used for gathering, computed from:
|
96 |
-
batch indices, clamped time indices, and channel indices.
|
97 |
-
"""
|
98 |
-
# Use default device unless specified otherwise; assumes inputs might define device later
|
99 |
-
device = None # Or determine dynamically if needed, e.g., from a model parameter
|
100 |
-
|
101 |
-
delay_arr = torch.tensor(delay_pattern, dtype=torch.int32, device=device)
|
102 |
-
|
103 |
-
t_idx_BT1 = torch.broadcast_to(torch.arange(T, device=device).unsqueeze(0), [B, T])
|
104 |
-
t_idx_BT1 = t_idx_BT1.unsqueeze(-1)
|
105 |
-
|
106 |
-
t_idx_BxTxC = torch.minimum(
|
107 |
-
t_idx_BT1 + delay_arr.view(1, 1, C),
|
108 |
-
torch.tensor(T - 1, device=device),
|
109 |
-
)
|
110 |
-
b_idx_BxTxC = torch.broadcast_to(torch.arange(B, device=device).view(B, 1, 1), [B, T, C])
|
111 |
-
c_idx_BxTxC = torch.broadcast_to(torch.arange(C, device=device).view(1, 1, C), [B, T, C])
|
112 |
-
|
113 |
-
indices_BTCx3 = torch.stack(
|
114 |
-
[
|
115 |
-
b_idx_BxTxC.reshape(-1),
|
116 |
-
t_idx_BxTxC.reshape(-1),
|
117 |
-
c_idx_BxTxC.reshape(-1),
|
118 |
-
],
|
119 |
-
axis=1,
|
120 |
-
).long() # Ensure indices are long type
|
121 |
-
|
122 |
-
return t_idx_BxTxC, indices_BTCx3
|
123 |
-
|
124 |
-
|
125 |
-
def revert_audio_delay(
|
126 |
-
audio_BxTxC: torch.Tensor,
|
127 |
-
pad_value: int,
|
128 |
-
precomp: tp.Tuple[torch.Tensor, torch.Tensor],
|
129 |
-
T: int,
|
130 |
-
) -> torch.Tensor:
|
131 |
-
"""
|
132 |
-
Reverts a delay pattern from batched audio tokens using precomputed indices (PyTorch version).
|
133 |
-
|
134 |
-
Args:
|
135 |
-
audio_BxTxC: Input delayed audio tensor
|
136 |
-
pad_value: Padding value for out-of-bounds indices
|
137 |
-
precomp: Precomputed revert indices tuple containing:
|
138 |
-
- t_idx_BxTxC: Time offset indices tensor
|
139 |
-
- indices_BTCx3: Gather indices tensor for original audio
|
140 |
-
T: Original sequence length before padding
|
141 |
-
|
142 |
-
Returns:
|
143 |
-
Reverted audio tensor with same shape as input
|
144 |
-
"""
|
145 |
-
t_idx_BxTxC, indices_BTCx3 = precomp
|
146 |
-
device = audio_BxTxC.device # Get device from input tensor
|
147 |
-
|
148 |
-
# Move precomputed indices to the same device as audio_BxTxC if they aren't already
|
149 |
-
t_idx_BxTxC = t_idx_BxTxC.to(device)
|
150 |
-
indices_BTCx3 = indices_BTCx3.to(device)
|
151 |
-
|
152 |
-
# Using PyTorch advanced indexing (equivalent to tf.gather_nd or np equivalent)
|
153 |
-
gathered_flat = audio_BxTxC[indices_BTCx3[:, 0], indices_BTCx3[:, 1], indices_BTCx3[:, 2]]
|
154 |
-
gathered_BxTxC = gathered_flat.view(audio_BxTxC.size()) # Use .size() for robust reshaping
|
155 |
-
|
156 |
-
# Create pad_tensor on the correct device
|
157 |
-
pad_tensor = torch.tensor(pad_value, dtype=audio_BxTxC.dtype, device=device)
|
158 |
-
# Create T tensor on the correct device for comparison
|
159 |
-
T_tensor = torch.tensor(T, device=device)
|
160 |
-
|
161 |
-
result_BxTxC = torch.where(t_idx_BxTxC >= T_tensor, pad_tensor, gathered_BxTxC) # Changed np.where to torch.where
|
162 |
-
|
163 |
-
return result_BxTxC
|
164 |
-
|
165 |
-
|
166 |
-
@torch.no_grad()
|
167 |
-
@torch.inference_mode()
|
168 |
-
def decode(
|
169 |
-
model,
|
170 |
-
audio_codes,
|
171 |
-
):
|
172 |
-
"""
|
173 |
-
Decodes the given frames into an output audio waveform
|
174 |
-
"""
|
175 |
-
if len(audio_codes) != 1:
|
176 |
-
raise ValueError(f"Expected one frame, got {len(audio_codes)}")
|
177 |
-
|
178 |
-
try:
|
179 |
-
audio_values = model.quantizer.from_codes(audio_codes)
|
180 |
-
audio_values = model.decode(audio_values[0])
|
181 |
-
|
182 |
-
return audio_values
|
183 |
-
except Exception as e:
|
184 |
-
print(f"Error in decode method: {str(e)}")
|
185 |
-
raise
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dia/config.py
DELETED
@@ -1,187 +0,0 @@
|
|
1 |
-
"""Configuration management module for the Dia model.
|
2 |
-
|
3 |
-
This module provides comprehensive configuration management for the Dia model,
|
4 |
-
utilizing Pydantic for validation. It defines configurations for data processing,
|
5 |
-
model architecture (encoder and decoder), and training settings.
|
6 |
-
|
7 |
-
Key components:
|
8 |
-
- DataConfig: Parameters for data loading and preprocessing.
|
9 |
-
- EncoderConfig: Architecture details for the encoder module.
|
10 |
-
- DecoderConfig: Architecture details for the decoder module.
|
11 |
-
- ModelConfig: Combined model architecture settings.
|
12 |
-
- TrainingConfig: Training hyperparameters and settings.
|
13 |
-
- DiaConfig: Master configuration combining all components.
|
14 |
-
"""
|
15 |
-
|
16 |
-
import os
|
17 |
-
from typing import Annotated
|
18 |
-
|
19 |
-
from pydantic import BaseModel, BeforeValidator, Field
|
20 |
-
|
21 |
-
|
22 |
-
class DataConfig(BaseModel, frozen=True):
|
23 |
-
"""Configuration for data loading and preprocessing.
|
24 |
-
|
25 |
-
Attributes:
|
26 |
-
text_length: Maximum length of text sequences (must be multiple of 128).
|
27 |
-
audio_length: Maximum length of audio sequences (must be multiple of 128).
|
28 |
-
channels: Number of audio channels.
|
29 |
-
text_pad_value: Value used for padding text sequences.
|
30 |
-
audio_eos_value: Value representing the end of audio sequences.
|
31 |
-
audio_bos_value: Value representing the beginning of audio sequences.
|
32 |
-
audio_pad_value: Value used for padding audio sequences.
|
33 |
-
delay_pattern: List of delay values for each audio channel.
|
34 |
-
"""
|
35 |
-
|
36 |
-
text_length: Annotated[int, BeforeValidator(lambda x: (x + 127) // 128 * 128)] = Field(gt=0, multiple_of=128)
|
37 |
-
audio_length: Annotated[int, BeforeValidator(lambda x: (x + 127) // 128 * 128)] = Field(gt=0, multiple_of=128)
|
38 |
-
channels: int = Field(default=9, gt=0, multiple_of=1)
|
39 |
-
text_pad_value: int = Field(default=0)
|
40 |
-
audio_eos_value: int = Field(default=1024)
|
41 |
-
audio_pad_value: int = Field(default=1025)
|
42 |
-
audio_bos_value: int = Field(default=1026)
|
43 |
-
delay_pattern: list[Annotated[int, Field(ge=0)]] = Field(default_factory=lambda: [0, 8, 9, 10, 11, 12, 13, 14, 15])
|
44 |
-
|
45 |
-
def __hash__(self) -> int:
|
46 |
-
"""Generate a hash based on all fields of the config."""
|
47 |
-
return hash(
|
48 |
-
(
|
49 |
-
self.text_length,
|
50 |
-
self.audio_length,
|
51 |
-
self.channels,
|
52 |
-
self.text_pad_value,
|
53 |
-
self.audio_pad_value,
|
54 |
-
self.audio_bos_value,
|
55 |
-
self.audio_eos_value,
|
56 |
-
tuple(self.delay_pattern),
|
57 |
-
)
|
58 |
-
)
|
59 |
-
|
60 |
-
|
61 |
-
class EncoderConfig(BaseModel, frozen=True):
|
62 |
-
"""Configuration for the encoder component of the Dia model.
|
63 |
-
|
64 |
-
Attributes:
|
65 |
-
n_layer: Number of transformer layers.
|
66 |
-
n_embd: Embedding dimension.
|
67 |
-
n_hidden: Hidden dimension size in the MLP layers.
|
68 |
-
n_head: Number of attention heads.
|
69 |
-
head_dim: Dimension per attention head.
|
70 |
-
"""
|
71 |
-
|
72 |
-
n_layer: int = Field(gt=0)
|
73 |
-
n_embd: int = Field(gt=0)
|
74 |
-
n_hidden: int = Field(gt=0)
|
75 |
-
n_head: int = Field(gt=0)
|
76 |
-
head_dim: int = Field(gt=0)
|
77 |
-
|
78 |
-
|
79 |
-
class DecoderConfig(BaseModel, frozen=True):
|
80 |
-
"""Configuration for the decoder component of the Dia model.
|
81 |
-
|
82 |
-
Attributes:
|
83 |
-
n_layer: Number of transformer layers.
|
84 |
-
n_embd: Embedding dimension.
|
85 |
-
n_hidden: Hidden dimension size in the MLP layers.
|
86 |
-
gqa_query_heads: Number of query heads for grouped-query self-attention.
|
87 |
-
kv_heads: Number of key/value heads for grouped-query self-attention.
|
88 |
-
gqa_head_dim: Dimension per query head for grouped-query self-attention.
|
89 |
-
cross_query_heads: Number of query heads for cross-attention.
|
90 |
-
cross_head_dim: Dimension per cross-attention head.
|
91 |
-
"""
|
92 |
-
|
93 |
-
n_layer: int = Field(gt=0)
|
94 |
-
n_embd: int = Field(gt=0)
|
95 |
-
n_hidden: int = Field(gt=0)
|
96 |
-
gqa_query_heads: int = Field(gt=0)
|
97 |
-
kv_heads: int = Field(gt=0)
|
98 |
-
gqa_head_dim: int = Field(gt=0)
|
99 |
-
cross_query_heads: int = Field(gt=0)
|
100 |
-
cross_head_dim: int = Field(gt=0)
|
101 |
-
|
102 |
-
|
103 |
-
class ModelConfig(BaseModel, frozen=True):
|
104 |
-
"""Main configuration container for the Dia model architecture.
|
105 |
-
|
106 |
-
Attributes:
|
107 |
-
encoder: Configuration for the encoder component.
|
108 |
-
decoder: Configuration for the decoder component.
|
109 |
-
src_vocab_size: Size of the source (text) vocabulary.
|
110 |
-
tgt_vocab_size: Size of the target (audio code) vocabulary.
|
111 |
-
dropout: Dropout probability applied within the model.
|
112 |
-
normalization_layer_epsilon: Epsilon value for normalization layers (e.g., LayerNorm).
|
113 |
-
weight_dtype: Data type for model weights (e.g., "float32", "bfloat16").
|
114 |
-
rope_min_timescale: Minimum timescale for Rotary Positional Embeddings (RoPE).
|
115 |
-
rope_max_timescale: Maximum timescale for Rotary Positional Embeddings (RoPE).
|
116 |
-
"""
|
117 |
-
|
118 |
-
encoder: EncoderConfig
|
119 |
-
decoder: DecoderConfig
|
120 |
-
src_vocab_size: int = Field(default=128, gt=0)
|
121 |
-
tgt_vocab_size: int = Field(default=1028, gt=0)
|
122 |
-
dropout: float = Field(default=0.0, ge=0.0, lt=1.0)
|
123 |
-
normalization_layer_epsilon: float = Field(default=1.0e-5, ge=0.0)
|
124 |
-
weight_dtype: str = Field(default="float32", description="Weight precision")
|
125 |
-
rope_min_timescale: int = Field(default=1, description="Timescale For global Attention")
|
126 |
-
rope_max_timescale: int = Field(default=10_000, description="Timescale For global Attention")
|
127 |
-
|
128 |
-
|
129 |
-
class TrainingConfig(BaseModel, frozen=True):
|
130 |
-
pass
|
131 |
-
|
132 |
-
|
133 |
-
class DiaConfig(BaseModel, frozen=True):
|
134 |
-
"""Master configuration for the Dia model.
|
135 |
-
|
136 |
-
Combines all sub-configurations into a single validated object.
|
137 |
-
|
138 |
-
Attributes:
|
139 |
-
version: Configuration version string.
|
140 |
-
model: Model architecture configuration.
|
141 |
-
training: Training process configuration (precision settings).
|
142 |
-
data: Data loading and processing configuration.
|
143 |
-
"""
|
144 |
-
|
145 |
-
version: str = Field(default="1.0")
|
146 |
-
model: ModelConfig
|
147 |
-
# TODO: remove training. this is just for backward compatibility
|
148 |
-
training: TrainingConfig | None = Field(default=None)
|
149 |
-
data: DataConfig
|
150 |
-
|
151 |
-
def save(self, path: str) -> None:
|
152 |
-
"""Save the current configuration instance to a JSON file.
|
153 |
-
|
154 |
-
Ensures the parent directory exists and the file has a .json extension.
|
155 |
-
|
156 |
-
Args:
|
157 |
-
path: The target file path to save the configuration.
|
158 |
-
|
159 |
-
Raises:
|
160 |
-
ValueError: If the path is not a file with a .json extension.
|
161 |
-
"""
|
162 |
-
os.makedirs(os.path.dirname(path), exist_ok=True)
|
163 |
-
config_json = self.model_dump_json(indent=2)
|
164 |
-
with open(path, "w") as f:
|
165 |
-
f.write(config_json)
|
166 |
-
|
167 |
-
@classmethod
|
168 |
-
def load(cls, path: str) -> "DiaConfig | None":
|
169 |
-
"""Load and validate a Dia configuration from a JSON file.
|
170 |
-
|
171 |
-
Args:
|
172 |
-
path: The path to the configuration file.
|
173 |
-
|
174 |
-
Returns:
|
175 |
-
A validated DiaConfig instance if the file exists and is valid,
|
176 |
-
otherwise None if the file is not found.
|
177 |
-
|
178 |
-
Raises:
|
179 |
-
ValueError: If the path does not point to an existing .json file.
|
180 |
-
pydantic.ValidationError: If the JSON content fails validation against the DiaConfig schema.
|
181 |
-
"""
|
182 |
-
try:
|
183 |
-
with open(path, "r") as f:
|
184 |
-
content = f.read()
|
185 |
-
return cls.model_validate_json(content)
|
186 |
-
except FileNotFoundError:
|
187 |
-
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dia/layers.py
DELETED
@@ -1,624 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
import torch.nn.functional as F
|
4 |
-
from huggingface_hub import PyTorchModelHubMixin
|
5 |
-
from torch import Tensor
|
6 |
-
from torch.nn import RMSNorm
|
7 |
-
|
8 |
-
from .config import DiaConfig
|
9 |
-
from .state import DecoderInferenceState, EncoderInferenceState, KVCache
|
10 |
-
|
11 |
-
|
12 |
-
def _normalize_axes(axes: tuple[int, ...], ndim: int) -> tuple[int, ...]:
|
13 |
-
return tuple(ax if ax >= 0 else ndim + ax for ax in axes)
|
14 |
-
|
15 |
-
|
16 |
-
class DenseGeneral(nn.Module):
|
17 |
-
"""
|
18 |
-
PyTorch equivalent of flax.linen.DenseGeneral with shapes defined at init.
|
19 |
-
|
20 |
-
Stores weights (`kernel`) in the same layout as Jax and uses torch.tensordot
|
21 |
-
for the generalized matrix multiplication. Weight/bias shapes are calculated
|
22 |
-
and parameters created during initialization based on config.
|
23 |
-
`load_weights` validates shapes and copies data.
|
24 |
-
|
25 |
-
Attributes:
|
26 |
-
axis (Tuple[int, ...]): Input axis or axes to contract.
|
27 |
-
in_shapes (Tuple[int, ...]): Sizes of the input dimensions specified by `axis`.
|
28 |
-
out_features (Tuple[int, ...]): Shape of the output features (non-contracted dims).
|
29 |
-
use_bias (bool): Whether to add a bias term.
|
30 |
-
weight (nn.Parameter): The kernel parameter.
|
31 |
-
bias (Optional[nn.Parameter]): The bias parameter (if use_bias=True).
|
32 |
-
"""
|
33 |
-
|
34 |
-
def __init__(
|
35 |
-
self,
|
36 |
-
in_shapes: tuple[int, ...],
|
37 |
-
out_features: tuple[int, ...],
|
38 |
-
axis: tuple[int, ...] = (-1,),
|
39 |
-
weight_dtype: torch.dtype | None = None,
|
40 |
-
device: torch.device | None = None,
|
41 |
-
):
|
42 |
-
super().__init__()
|
43 |
-
self.in_shapes = in_shapes
|
44 |
-
self.out_features = out_features
|
45 |
-
self.axis = axis
|
46 |
-
self.kernel_shape = self.in_shapes + self.out_features
|
47 |
-
|
48 |
-
factory_kwargs = {"device": device, "dtype": weight_dtype}
|
49 |
-
self.weight = nn.Parameter(torch.empty(self.kernel_shape, **factory_kwargs))
|
50 |
-
|
51 |
-
def forward(self, inputs: Tensor) -> Tensor:
|
52 |
-
norm_axis = _normalize_axes(self.axis, inputs.ndim)
|
53 |
-
kernel_contract_axes = tuple(range(len(norm_axis)))
|
54 |
-
|
55 |
-
output = torch.tensordot(
|
56 |
-
inputs.to(self.weight.dtype),
|
57 |
-
self.weight,
|
58 |
-
dims=(norm_axis, kernel_contract_axes),
|
59 |
-
).to(inputs.dtype)
|
60 |
-
return output
|
61 |
-
|
62 |
-
|
63 |
-
class MlpBlock(nn.Module):
|
64 |
-
"""MLP block using DenseGeneral."""
|
65 |
-
|
66 |
-
def __init__(self, embed_dim: int, intermediate_dim: int, compute_dtype: torch.dtype):
|
67 |
-
super().__init__()
|
68 |
-
self.dtype = compute_dtype
|
69 |
-
|
70 |
-
self.wi_fused = DenseGeneral(
|
71 |
-
in_shapes=(embed_dim,),
|
72 |
-
out_features=(2, intermediate_dim),
|
73 |
-
axis=(-1,),
|
74 |
-
weight_dtype=compute_dtype,
|
75 |
-
)
|
76 |
-
|
77 |
-
self.wo = DenseGeneral(
|
78 |
-
in_shapes=(intermediate_dim,),
|
79 |
-
out_features=(embed_dim,),
|
80 |
-
axis=(-1,),
|
81 |
-
weight_dtype=compute_dtype,
|
82 |
-
)
|
83 |
-
|
84 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
85 |
-
"""Forward pass."""
|
86 |
-
fused_x = self.wi_fused(x)
|
87 |
-
|
88 |
-
gate = fused_x[..., 0, :]
|
89 |
-
up = fused_x[..., 1, :]
|
90 |
-
|
91 |
-
hidden = torch.mul(F.silu(gate), up).to(self.dtype)
|
92 |
-
|
93 |
-
output = self.wo(hidden)
|
94 |
-
return output
|
95 |
-
|
96 |
-
|
97 |
-
class RotaryEmbedding(nn.Module):
|
98 |
-
"""Rotary Position Embedding (RoPE) implementation in PyTorch."""
|
99 |
-
|
100 |
-
def __init__(
|
101 |
-
self,
|
102 |
-
embedding_dims: int,
|
103 |
-
min_timescale: int = 1,
|
104 |
-
max_timescale: int = 10000,
|
105 |
-
dtype: torch.dtype = torch.float32,
|
106 |
-
):
|
107 |
-
super().__init__()
|
108 |
-
if embedding_dims % 2 != 0:
|
109 |
-
raise ValueError("Embedding dim must be even for RoPE.")
|
110 |
-
self.embedding_dims = embedding_dims
|
111 |
-
self.min_timescale = min_timescale
|
112 |
-
self.max_timescale = max_timescale
|
113 |
-
self.compute_dtype = dtype
|
114 |
-
|
115 |
-
half_embedding_dim = embedding_dims // 2
|
116 |
-
fraction = (2.0 * torch.arange(0, half_embedding_dim)) / embedding_dims
|
117 |
-
timescale = (self.min_timescale * (self.max_timescale / self.min_timescale) ** fraction).to(torch.float32)
|
118 |
-
self.register_buffer("timescale", timescale, persistent=False)
|
119 |
-
|
120 |
-
def forward(self, inputs: torch.Tensor, position: torch.Tensor):
|
121 |
-
"""Applies RoPE."""
|
122 |
-
position = position.unsqueeze(-1).unsqueeze(-1)
|
123 |
-
sinusoid_inp = position / self.timescale
|
124 |
-
sin = torch.sin(sinusoid_inp)
|
125 |
-
cos = torch.cos(sinusoid_inp)
|
126 |
-
first_half, second_half = torch.chunk(inputs.to(torch.float32), 2, dim=-1)
|
127 |
-
first_part = first_half * cos - second_half * sin
|
128 |
-
second_part = second_half * cos + first_half * sin
|
129 |
-
return torch.cat((first_part.to(self.compute_dtype), second_part.to(self.compute_dtype)), dim=-1)
|
130 |
-
|
131 |
-
|
132 |
-
class Attention(nn.Module):
|
133 |
-
"""Attention using DenseGeneral."""
|
134 |
-
|
135 |
-
def __init__(
|
136 |
-
self,
|
137 |
-
config: DiaConfig,
|
138 |
-
q_embed_dim: int,
|
139 |
-
kv_embed_dim: int,
|
140 |
-
num_query_heads: int,
|
141 |
-
num_kv_heads: int,
|
142 |
-
head_dim: int,
|
143 |
-
compute_dtype: torch.dtype,
|
144 |
-
is_cross_attn: bool = False,
|
145 |
-
out_embed_dim: int | None = None,
|
146 |
-
):
|
147 |
-
super().__init__()
|
148 |
-
self.num_query_heads = num_query_heads
|
149 |
-
self.num_kv_heads = num_kv_heads
|
150 |
-
self.head_dim = head_dim
|
151 |
-
self.is_cross_attn = is_cross_attn
|
152 |
-
self.output_dim = out_embed_dim if out_embed_dim is not None else q_embed_dim
|
153 |
-
self.projected_query_dim = num_query_heads * head_dim
|
154 |
-
if num_query_heads % num_kv_heads != 0:
|
155 |
-
raise ValueError(f"num_query_heads ({num_query_heads}) must be divisible by num_kv_heads ({num_kv_heads})")
|
156 |
-
self.num_gqa_groups = num_query_heads // num_kv_heads
|
157 |
-
|
158 |
-
# --- Projection Layers using DenseGeneral ---
|
159 |
-
self.q_proj = DenseGeneral(
|
160 |
-
in_shapes=(q_embed_dim,),
|
161 |
-
out_features=(num_query_heads, head_dim),
|
162 |
-
axis=(-1,),
|
163 |
-
weight_dtype=compute_dtype,
|
164 |
-
)
|
165 |
-
self.k_proj = DenseGeneral(
|
166 |
-
in_shapes=(kv_embed_dim,),
|
167 |
-
out_features=(num_kv_heads, head_dim),
|
168 |
-
axis=(-1,),
|
169 |
-
weight_dtype=compute_dtype,
|
170 |
-
)
|
171 |
-
self.v_proj = DenseGeneral(
|
172 |
-
in_shapes=(kv_embed_dim,),
|
173 |
-
out_features=(num_kv_heads, head_dim),
|
174 |
-
axis=(-1,),
|
175 |
-
weight_dtype=compute_dtype,
|
176 |
-
)
|
177 |
-
self.o_proj = DenseGeneral(
|
178 |
-
in_shapes=(num_query_heads, head_dim),
|
179 |
-
out_features=(self.output_dim,),
|
180 |
-
axis=(-2, -1),
|
181 |
-
weight_dtype=compute_dtype,
|
182 |
-
)
|
183 |
-
|
184 |
-
# --- Rotary Embedding ---
|
185 |
-
self.rotary_emb = RotaryEmbedding(
|
186 |
-
embedding_dims=self.head_dim,
|
187 |
-
min_timescale=config.model.rope_min_timescale,
|
188 |
-
max_timescale=config.model.rope_max_timescale,
|
189 |
-
dtype=compute_dtype,
|
190 |
-
)
|
191 |
-
|
192 |
-
def forward(
|
193 |
-
self,
|
194 |
-
Xq: torch.Tensor, # (B, T, D) T = 1 in AR generation
|
195 |
-
Xkv: torch.Tensor, # (B, S, E) S = 1 in AR generation
|
196 |
-
q_positions: torch.Tensor, # (B, T)
|
197 |
-
kv_positions: torch.Tensor | None = None, # (B, S)
|
198 |
-
attn_mask: torch.Tensor | None = None, # None in Decoder Self Attention, Valid mask in Others
|
199 |
-
cache: KVCache | None = None, # None in Encoder, KVCache in Decoder
|
200 |
-
prefill: bool = False,
|
201 |
-
is_causal: bool = False,
|
202 |
-
) -> tuple[torch.Tensor, tuple[torch.Tensor, torch.Tensor] | None]:
|
203 |
-
"""
|
204 |
-
Performs attention calculation with optional KV caching.
|
205 |
-
|
206 |
-
Args:
|
207 |
-
Xq: Query tensor (B, T, D). T=1 during single-step decoding.
|
208 |
-
Xkv: Key/Value source tensor (B, S, E). S=1 during single-step decoding for self-attn.
|
209 |
-
q_positions: Positions for queries (B, T).
|
210 |
-
kv_positions: Positions for keys/values (B, S). If None, uses q_positions.
|
211 |
-
attn_mask: Attention mask.
|
212 |
-
cache: KVCache.
|
213 |
-
prefill: If True, use prefill mode.
|
214 |
-
|
215 |
-
Returns:
|
216 |
-
A tuple containing:
|
217 |
-
- output: The attention output tensor (B, T, output_dim).
|
218 |
-
- present_kv: The K/V state to be cached for the next step ((B, N, S_new, H), (B, N, S_new, H)). For self-attn, S_new = S_past + S. For cross-attn, S_new = S_kv.
|
219 |
-
"""
|
220 |
-
if kv_positions is None:
|
221 |
-
kv_positions = q_positions
|
222 |
-
original_dtype = Xq.dtype
|
223 |
-
|
224 |
-
Xq_BxTxNxH = self.q_proj(Xq)
|
225 |
-
Xq_BxTxNxH = self.rotary_emb(Xq_BxTxNxH, position=q_positions)
|
226 |
-
Xq_BxNxTxH = Xq_BxTxNxH.transpose(1, 2)
|
227 |
-
|
228 |
-
attn_k: torch.Tensor | None = None
|
229 |
-
attn_v: torch.Tensor | None = None
|
230 |
-
|
231 |
-
if self.is_cross_attn:
|
232 |
-
attn_k, attn_v = cache.k, cache.v
|
233 |
-
else:
|
234 |
-
Xk_BxSxKxH = self.k_proj(Xkv) # (B, S, K, H)
|
235 |
-
Xv_BxSxKxH = self.v_proj(Xkv) # (B, S, K, H)
|
236 |
-
Xk_BxSxKxH = self.rotary_emb(Xk_BxSxKxH, position=kv_positions) # (B, S, K, H)
|
237 |
-
|
238 |
-
Xk_BxKxSxH = Xk_BxSxKxH.transpose(1, 2) # (B, K, S, H)
|
239 |
-
Xv_BxKxSxH = Xv_BxSxKxH.transpose(1, 2) # (B, K, S, H)
|
240 |
-
|
241 |
-
if cache is None:
|
242 |
-
attn_k = Xk_BxKxSxH
|
243 |
-
attn_v = Xv_BxKxSxH
|
244 |
-
else:
|
245 |
-
if prefill:
|
246 |
-
attn_k, attn_v = Xk_BxKxSxH, Xv_BxKxSxH
|
247 |
-
cache.prefill(attn_k, attn_v)
|
248 |
-
else:
|
249 |
-
attn_k, attn_v = cache.update(Xk_BxKxSxH, Xv_BxKxSxH)
|
250 |
-
|
251 |
-
attn_output = F.scaled_dot_product_attention(
|
252 |
-
Xq_BxNxTxH,
|
253 |
-
attn_k,
|
254 |
-
attn_v,
|
255 |
-
attn_mask=attn_mask,
|
256 |
-
scale=1.0,
|
257 |
-
enable_gqa=self.num_gqa_groups > 1,
|
258 |
-
is_causal=is_causal,
|
259 |
-
)
|
260 |
-
|
261 |
-
attn_output = attn_output.transpose(1, 2).contiguous() # (B, T, N, H)
|
262 |
-
output = self.o_proj(attn_output)
|
263 |
-
|
264 |
-
return output.to(original_dtype)
|
265 |
-
|
266 |
-
|
267 |
-
class EncoderLayer(nn.Module):
|
268 |
-
"""Transformer Encoder Layer using DenseGeneral."""
|
269 |
-
|
270 |
-
def __init__(self, config: DiaConfig, compute_dtype: torch.dtype):
|
271 |
-
super().__init__()
|
272 |
-
self.config = config
|
273 |
-
model_config = config.model
|
274 |
-
enc_config = config.model.encoder
|
275 |
-
embed_dim = enc_config.n_embd
|
276 |
-
self.compute_dtype = compute_dtype
|
277 |
-
|
278 |
-
self.pre_sa_norm = RMSNorm(
|
279 |
-
embed_dim,
|
280 |
-
eps=model_config.normalization_layer_epsilon,
|
281 |
-
dtype=torch.float32,
|
282 |
-
)
|
283 |
-
self.self_attention = Attention(
|
284 |
-
config,
|
285 |
-
q_embed_dim=embed_dim,
|
286 |
-
kv_embed_dim=embed_dim,
|
287 |
-
num_query_heads=enc_config.n_head,
|
288 |
-
num_kv_heads=enc_config.n_head,
|
289 |
-
head_dim=enc_config.head_dim,
|
290 |
-
compute_dtype=compute_dtype,
|
291 |
-
is_cross_attn=False,
|
292 |
-
out_embed_dim=embed_dim,
|
293 |
-
)
|
294 |
-
self.post_sa_norm = RMSNorm(
|
295 |
-
embed_dim,
|
296 |
-
eps=model_config.normalization_layer_epsilon,
|
297 |
-
dtype=torch.float32,
|
298 |
-
)
|
299 |
-
self.mlp = MlpBlock(embed_dim=embed_dim, intermediate_dim=enc_config.n_hidden, compute_dtype=compute_dtype)
|
300 |
-
|
301 |
-
def forward(
|
302 |
-
self,
|
303 |
-
x: torch.Tensor,
|
304 |
-
state: EncoderInferenceState,
|
305 |
-
) -> torch.Tensor:
|
306 |
-
residual = x
|
307 |
-
x_norm = self.pre_sa_norm(x).to(self.compute_dtype)
|
308 |
-
|
309 |
-
sa_out = self.self_attention(
|
310 |
-
Xq=x_norm,
|
311 |
-
Xkv=x_norm,
|
312 |
-
q_positions=state.positions,
|
313 |
-
kv_positions=state.positions,
|
314 |
-
attn_mask=state.attn_mask,
|
315 |
-
)
|
316 |
-
x = residual + sa_out
|
317 |
-
|
318 |
-
residual = x
|
319 |
-
x_norm = self.post_sa_norm(x).to(self.compute_dtype)
|
320 |
-
mlp_out = self.mlp(x_norm)
|
321 |
-
x = residual + mlp_out
|
322 |
-
|
323 |
-
return x
|
324 |
-
|
325 |
-
|
326 |
-
class Encoder(nn.Module):
|
327 |
-
"""Transformer Encoder Stack using DenseGeneral."""
|
328 |
-
|
329 |
-
def __init__(self, config: DiaConfig, compute_dtype: torch.dtype):
|
330 |
-
super().__init__()
|
331 |
-
self.config = config
|
332 |
-
model_config = config.model
|
333 |
-
enc_config = config.model.encoder
|
334 |
-
self.compute_dtype = compute_dtype
|
335 |
-
|
336 |
-
self.embedding = nn.Embedding(
|
337 |
-
model_config.src_vocab_size,
|
338 |
-
enc_config.n_embd,
|
339 |
-
dtype=compute_dtype,
|
340 |
-
)
|
341 |
-
self.layers = nn.ModuleList([EncoderLayer(config, compute_dtype) for _ in range(enc_config.n_layer)])
|
342 |
-
self.norm = RMSNorm(
|
343 |
-
enc_config.n_embd,
|
344 |
-
eps=model_config.normalization_layer_epsilon,
|
345 |
-
dtype=torch.float32,
|
346 |
-
)
|
347 |
-
|
348 |
-
def forward(
|
349 |
-
self,
|
350 |
-
x_ids: torch.Tensor,
|
351 |
-
state: EncoderInferenceState,
|
352 |
-
) -> torch.Tensor:
|
353 |
-
x = self.embedding(x_ids)
|
354 |
-
|
355 |
-
for layer in self.layers:
|
356 |
-
x = layer(x, state)
|
357 |
-
|
358 |
-
x = self.norm(x).to(self.compute_dtype)
|
359 |
-
return x
|
360 |
-
|
361 |
-
|
362 |
-
class DecoderLayer(nn.Module):
|
363 |
-
"""Transformer Decoder Layer using DenseGeneral."""
|
364 |
-
|
365 |
-
def __init__(self, config: DiaConfig, compute_dtype: torch.dtype):
|
366 |
-
super().__init__()
|
367 |
-
self.config = config
|
368 |
-
model_config = config.model
|
369 |
-
dec_config = config.model.decoder
|
370 |
-
enc_config = config.model.encoder
|
371 |
-
dec_embed_dim = dec_config.n_embd
|
372 |
-
enc_embed_dim = enc_config.n_embd
|
373 |
-
self.compute_dtype = compute_dtype
|
374 |
-
|
375 |
-
# Norms
|
376 |
-
self.pre_sa_norm = RMSNorm(
|
377 |
-
dec_embed_dim,
|
378 |
-
eps=model_config.normalization_layer_epsilon,
|
379 |
-
dtype=torch.float32,
|
380 |
-
)
|
381 |
-
self.pre_ca_norm = RMSNorm(
|
382 |
-
dec_embed_dim,
|
383 |
-
eps=model_config.normalization_layer_epsilon,
|
384 |
-
dtype=torch.float32,
|
385 |
-
)
|
386 |
-
self.pre_mlp_norm = RMSNorm(
|
387 |
-
dec_embed_dim,
|
388 |
-
eps=model_config.normalization_layer_epsilon,
|
389 |
-
dtype=torch.float32,
|
390 |
-
)
|
391 |
-
|
392 |
-
# Self-Attention (GQA) with Causal Masking
|
393 |
-
self.self_attention = Attention(
|
394 |
-
config,
|
395 |
-
q_embed_dim=dec_embed_dim,
|
396 |
-
kv_embed_dim=dec_embed_dim,
|
397 |
-
num_query_heads=dec_config.gqa_query_heads,
|
398 |
-
num_kv_heads=dec_config.kv_heads,
|
399 |
-
head_dim=dec_config.gqa_head_dim,
|
400 |
-
compute_dtype=compute_dtype,
|
401 |
-
is_cross_attn=False,
|
402 |
-
out_embed_dim=dec_embed_dim,
|
403 |
-
)
|
404 |
-
# Cross-Attention (MHA)
|
405 |
-
self.cross_attention = Attention(
|
406 |
-
config=config,
|
407 |
-
q_embed_dim=dec_embed_dim,
|
408 |
-
kv_embed_dim=enc_embed_dim, # Note kv_embed_dim
|
409 |
-
num_query_heads=dec_config.cross_query_heads,
|
410 |
-
num_kv_heads=dec_config.cross_query_heads,
|
411 |
-
head_dim=dec_config.cross_head_dim,
|
412 |
-
compute_dtype=compute_dtype,
|
413 |
-
is_cross_attn=True,
|
414 |
-
out_embed_dim=dec_embed_dim,
|
415 |
-
)
|
416 |
-
# MLP
|
417 |
-
self.mlp = MlpBlock(
|
418 |
-
embed_dim=dec_embed_dim,
|
419 |
-
intermediate_dim=dec_config.n_hidden,
|
420 |
-
compute_dtype=compute_dtype,
|
421 |
-
)
|
422 |
-
|
423 |
-
def forward(
|
424 |
-
self,
|
425 |
-
x: torch.Tensor,
|
426 |
-
state: DecoderInferenceState,
|
427 |
-
self_attn_cache: KVCache | None = None,
|
428 |
-
cross_attn_cache: KVCache | None = None,
|
429 |
-
prefill: bool = False,
|
430 |
-
) -> torch.Tensor:
|
431 |
-
residual = x
|
432 |
-
x_norm = self.pre_sa_norm(x).to(self.compute_dtype)
|
433 |
-
|
434 |
-
sa_out = self.self_attention(
|
435 |
-
Xq=x_norm, # (2, 1, D)
|
436 |
-
Xkv=x_norm, # (2, 1, D)
|
437 |
-
q_positions=state.dec_positions, # (2, 1)
|
438 |
-
kv_positions=state.dec_positions, # (2, 1)
|
439 |
-
attn_mask=None,
|
440 |
-
cache=self_attn_cache,
|
441 |
-
prefill=prefill,
|
442 |
-
is_causal=prefill,
|
443 |
-
)
|
444 |
-
|
445 |
-
x = residual + sa_out
|
446 |
-
|
447 |
-
residual = x
|
448 |
-
x_norm = self.pre_ca_norm(x).to(self.compute_dtype)
|
449 |
-
ca_out = self.cross_attention(
|
450 |
-
Xq=x_norm,
|
451 |
-
Xkv=state.enc_out,
|
452 |
-
q_positions=state.dec_positions,
|
453 |
-
kv_positions=state.enc_positions,
|
454 |
-
attn_mask=state.dec_cross_attn_mask,
|
455 |
-
cache=cross_attn_cache,
|
456 |
-
)
|
457 |
-
x = residual + ca_out
|
458 |
-
|
459 |
-
residual = x
|
460 |
-
x_norm = self.pre_mlp_norm(x).to(self.compute_dtype)
|
461 |
-
mlp_out = self.mlp(x_norm)
|
462 |
-
x = residual + mlp_out
|
463 |
-
|
464 |
-
return x
|
465 |
-
|
466 |
-
|
467 |
-
class Decoder(nn.Module):
|
468 |
-
"""Transformer Decoder Stack using DenseGeneral."""
|
469 |
-
|
470 |
-
def __init__(self, config: DiaConfig, compute_dtype: torch.dtype):
|
471 |
-
super().__init__()
|
472 |
-
self.config = config
|
473 |
-
model_config = config.model
|
474 |
-
dec_config = config.model.decoder
|
475 |
-
data_config = config.data
|
476 |
-
self.num_channels = data_config.channels
|
477 |
-
self.num_layers = dec_config.n_layer
|
478 |
-
|
479 |
-
self.embeddings = nn.ModuleList(
|
480 |
-
[
|
481 |
-
nn.Embedding(model_config.tgt_vocab_size, dec_config.n_embd, dtype=compute_dtype)
|
482 |
-
for _ in range(self.num_channels)
|
483 |
-
]
|
484 |
-
)
|
485 |
-
self.layers = nn.ModuleList(
|
486 |
-
[DecoderLayer(config=config, compute_dtype=compute_dtype) for _ in range(self.num_layers)]
|
487 |
-
)
|
488 |
-
|
489 |
-
self.norm = RMSNorm(
|
490 |
-
dec_config.n_embd,
|
491 |
-
eps=model_config.normalization_layer_epsilon,
|
492 |
-
dtype=torch.float32,
|
493 |
-
)
|
494 |
-
|
495 |
-
self.logits_dense = DenseGeneral(
|
496 |
-
in_shapes=(dec_config.n_embd,),
|
497 |
-
out_features=(self.num_channels, model_config.tgt_vocab_size),
|
498 |
-
axis=(-1,),
|
499 |
-
weight_dtype=compute_dtype,
|
500 |
-
)
|
501 |
-
|
502 |
-
def precompute_cross_attn_cache(
|
503 |
-
self,
|
504 |
-
enc_out: torch.Tensor, # (B, S, E)
|
505 |
-
enc_positions: torch.Tensor, # (B, S)
|
506 |
-
) -> list[KVCache]:
|
507 |
-
"""
|
508 |
-
Computes the Key and Value tensors for cross-attention for each layer from the encoder output.
|
509 |
-
"""
|
510 |
-
per_layer_kv_cache: list[KVCache] = []
|
511 |
-
|
512 |
-
for layer in self.layers:
|
513 |
-
cross_attn_module = layer.cross_attention
|
514 |
-
k_proj = cross_attn_module.k_proj(enc_out)
|
515 |
-
v_proj = cross_attn_module.v_proj(enc_out)
|
516 |
-
|
517 |
-
k_proj = cross_attn_module.rotary_emb(k_proj, position=enc_positions)
|
518 |
-
k = k_proj.transpose(1, 2)
|
519 |
-
v = v_proj.transpose(1, 2)
|
520 |
-
|
521 |
-
per_layer_kv_cache.append(KVCache.from_kv(k, v))
|
522 |
-
|
523 |
-
return per_layer_kv_cache
|
524 |
-
|
525 |
-
def decode_step(
|
526 |
-
self,
|
527 |
-
tgt_ids_Bx1xC: torch.Tensor, # [B, 1, C]
|
528 |
-
state: DecoderInferenceState,
|
529 |
-
) -> torch.Tensor:
|
530 |
-
"""
|
531 |
-
Performs a single decoding step, managing KV caches layer by layer.
|
532 |
-
|
533 |
-
Returns:
|
534 |
-
A tuple containing:
|
535 |
-
- logits_Bx1xCV: The final output logits for the current step (B, 1, C*V), cast to float32.
|
536 |
-
"""
|
537 |
-
|
538 |
-
x = None
|
539 |
-
for i in range(self.num_channels):
|
540 |
-
channel_tokens = tgt_ids_Bx1xC[..., i]
|
541 |
-
channel_embed = self.embeddings[i](channel_tokens)
|
542 |
-
x = channel_embed if x is None else x + channel_embed
|
543 |
-
|
544 |
-
for i, layer in enumerate(self.layers):
|
545 |
-
self_cache = state.self_attn_cache[i]
|
546 |
-
cross_cache = state.cross_attn_cache[i]
|
547 |
-
x = layer(
|
548 |
-
x, # (2, 1, D)
|
549 |
-
state,
|
550 |
-
self_attn_cache=self_cache,
|
551 |
-
cross_attn_cache=cross_cache,
|
552 |
-
)
|
553 |
-
|
554 |
-
x = self.norm(x)
|
555 |
-
logits_Bx1xCxV = self.logits_dense(x)
|
556 |
-
|
557 |
-
return logits_Bx1xCxV.to(torch.float32)
|
558 |
-
|
559 |
-
def forward(self, tgt_ids_BxTxC: torch.Tensor, state: DecoderInferenceState) -> torch.Tensor:
|
560 |
-
"""
|
561 |
-
Forward pass for the Decoder stack, managing KV caches.
|
562 |
-
|
563 |
-
Args:
|
564 |
-
tgt_ids_BxTxC: Target token IDs (B, T, C).
|
565 |
-
encoder_out: Output from the encoder (B, S, E).
|
566 |
-
tgt_positions: Positions for target sequence (B, T).
|
567 |
-
src_positions: Positions for source sequence (B, S).
|
568 |
-
self_attn_mask: Mask for self-attention.
|
569 |
-
cross_attn_mask: Mask for cross-attention.
|
570 |
-
past_key_values: List containing the self-attention KV cache for each layer
|
571 |
-
from the previous decoding step. `len(past_key_values)` should
|
572 |
-
equal `num_layers`.
|
573 |
-
precomputed_cross_attn_kv: A single tuple containing the pre-computed K/V cache
|
574 |
-
derived from `encoder_out`. This is passed identically
|
575 |
-
to all layers.
|
576 |
-
|
577 |
-
Returns:
|
578 |
-
A tuple containing:
|
579 |
-
- logits: The final output logits (B, T, C * V), cast to float32.
|
580 |
-
- present_key_values: A list containing the updated self-attention KV cache
|
581 |
-
for each layer for the *current* decoding step.
|
582 |
-
"""
|
583 |
-
_, _, num_channels_in = tgt_ids_BxTxC.shape
|
584 |
-
assert num_channels_in == self.num_channels, "Input channels mismatch"
|
585 |
-
|
586 |
-
# Embeddings
|
587 |
-
x = None
|
588 |
-
for i in range(self.num_channels):
|
589 |
-
channel_tokens = tgt_ids_BxTxC[..., i]
|
590 |
-
channel_embed = self.embeddings[i](channel_tokens)
|
591 |
-
x = channel_embed if x is None else x + channel_embed
|
592 |
-
|
593 |
-
for i, layer in enumerate(self.layers):
|
594 |
-
self_cache = state.self_attn_cache[i]
|
595 |
-
cross_cache = state.cross_attn_cache[i]
|
596 |
-
x = layer(x, state, self_attn_cache=self_cache, cross_attn_cache=cross_cache, prefill=True)
|
597 |
-
|
598 |
-
# Final Norm
|
599 |
-
x = self.norm(x)
|
600 |
-
logits_BxTxCxV = self.logits_dense(x)
|
601 |
-
|
602 |
-
return logits_BxTxCxV.to(torch.float32)
|
603 |
-
|
604 |
-
|
605 |
-
class DiaModel(
|
606 |
-
nn.Module,
|
607 |
-
PyTorchModelHubMixin,
|
608 |
-
repo_url="https://github.com/nari-labs/dia",
|
609 |
-
pipeline_tag="text-to-speech",
|
610 |
-
license="apache-2.0",
|
611 |
-
coders={
|
612 |
-
DiaConfig: (
|
613 |
-
lambda x: x.model_dump(),
|
614 |
-
lambda data: DiaConfig.model_validate(data),
|
615 |
-
),
|
616 |
-
},
|
617 |
-
):
|
618 |
-
"""PyTorch Dia Model using DenseGeneral."""
|
619 |
-
|
620 |
-
def __init__(self, config: DiaConfig, compute_dtype: torch.dtype):
|
621 |
-
super().__init__()
|
622 |
-
self.config = config
|
623 |
-
self.encoder = Encoder(config, compute_dtype)
|
624 |
-
self.decoder = Decoder(config, compute_dtype)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dia/model.py
DELETED
@@ -1,455 +0,0 @@
|
|
1 |
-
import time
|
2 |
-
from enum import Enum
|
3 |
-
|
4 |
-
import dac
|
5 |
-
import numpy as np
|
6 |
-
import torch
|
7 |
-
import torchaudio
|
8 |
-
|
9 |
-
from .audio import apply_audio_delay, build_delay_indices, build_revert_indices, decode, revert_audio_delay
|
10 |
-
from .config import DiaConfig
|
11 |
-
from .layers import DiaModel
|
12 |
-
from .state import DecoderInferenceState, DecoderOutput, EncoderInferenceState
|
13 |
-
|
14 |
-
|
15 |
-
DEFAULT_SAMPLE_RATE = 44100
|
16 |
-
|
17 |
-
|
18 |
-
def _get_default_device():
|
19 |
-
if torch.cuda.is_available():
|
20 |
-
return torch.device("cuda")
|
21 |
-
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
|
22 |
-
return torch.device("mps")
|
23 |
-
return torch.device("cpu")
|
24 |
-
|
25 |
-
|
26 |
-
def _sample_next_token(
|
27 |
-
logits_BCxV: torch.Tensor,
|
28 |
-
temperature: float,
|
29 |
-
top_p: float,
|
30 |
-
cfg_filter_top_k: int | None = None,
|
31 |
-
) -> torch.Tensor:
|
32 |
-
if temperature == 0.0:
|
33 |
-
return torch.argmax(logits_BCxV, dim=-1)
|
34 |
-
|
35 |
-
logits_BCxV = logits_BCxV / temperature
|
36 |
-
if cfg_filter_top_k is not None:
|
37 |
-
_, top_k_indices_BCxV = torch.topk(logits_BCxV, k=cfg_filter_top_k, dim=-1)
|
38 |
-
mask = torch.ones_like(logits_BCxV, dtype=torch.bool)
|
39 |
-
mask.scatter_(dim=-1, index=top_k_indices_BCxV, value=False)
|
40 |
-
logits_BCxV = logits_BCxV.masked_fill(mask, -torch.inf)
|
41 |
-
|
42 |
-
if top_p < 1.0:
|
43 |
-
probs_BCxV = torch.softmax(logits_BCxV, dim=-1)
|
44 |
-
sorted_probs_BCxV, sorted_indices_BCxV = torch.sort(probs_BCxV, dim=-1, descending=True)
|
45 |
-
cumulative_probs_BCxV = torch.cumsum(sorted_probs_BCxV, dim=-1)
|
46 |
-
|
47 |
-
sorted_indices_to_remove_BCxV = cumulative_probs_BCxV > top_p
|
48 |
-
sorted_indices_to_remove_BCxV[..., 1:] = sorted_indices_to_remove_BCxV[..., :-1].clone()
|
49 |
-
sorted_indices_to_remove_BCxV[..., 0] = 0
|
50 |
-
|
51 |
-
indices_to_remove_BCxV = torch.zeros_like(sorted_indices_to_remove_BCxV)
|
52 |
-
indices_to_remove_BCxV.scatter_(dim=-1, index=sorted_indices_BCxV, src=sorted_indices_to_remove_BCxV)
|
53 |
-
logits_BCxV = logits_BCxV.masked_fill(indices_to_remove_BCxV, -torch.inf)
|
54 |
-
|
55 |
-
final_probs_BCxV = torch.softmax(logits_BCxV, dim=-1)
|
56 |
-
|
57 |
-
sampled_indices_BC = torch.multinomial(final_probs_BCxV, num_samples=1)
|
58 |
-
sampled_indices_C = sampled_indices_BC.squeeze(-1)
|
59 |
-
return sampled_indices_C
|
60 |
-
|
61 |
-
|
62 |
-
class ComputeDtype(str, Enum):
|
63 |
-
FLOAT32 = "float32"
|
64 |
-
FLOAT16 = "float16"
|
65 |
-
BFLOAT16 = "bfloat16"
|
66 |
-
|
67 |
-
def to_dtype(self) -> torch.dtype:
|
68 |
-
if self == ComputeDtype.FLOAT32:
|
69 |
-
return torch.float32
|
70 |
-
elif self == ComputeDtype.FLOAT16:
|
71 |
-
return torch.float16
|
72 |
-
elif self == ComputeDtype.BFLOAT16:
|
73 |
-
return torch.bfloat16
|
74 |
-
else:
|
75 |
-
raise ValueError(f"Unsupported compute dtype: {self}")
|
76 |
-
|
77 |
-
|
78 |
-
class Dia:
|
79 |
-
def __init__(
|
80 |
-
self,
|
81 |
-
config: DiaConfig,
|
82 |
-
compute_dtype: str | ComputeDtype = ComputeDtype.FLOAT32,
|
83 |
-
device: torch.device | None = None,
|
84 |
-
):
|
85 |
-
"""Initializes the Dia model.
|
86 |
-
|
87 |
-
Args:
|
88 |
-
config: The configuration object for the model.
|
89 |
-
device: The device to load the model onto. If None, will automatically select the best available device.
|
90 |
-
|
91 |
-
Raises:
|
92 |
-
RuntimeError: If there is an error loading the DAC model.
|
93 |
-
"""
|
94 |
-
super().__init__()
|
95 |
-
self.config = config
|
96 |
-
self.device = device if device is not None else _get_default_device()
|
97 |
-
if isinstance(compute_dtype, str):
|
98 |
-
compute_dtype = ComputeDtype(compute_dtype)
|
99 |
-
self.compute_dtype = compute_dtype.to_dtype()
|
100 |
-
self.model = DiaModel(config, self.compute_dtype)
|
101 |
-
self.dac_model = None
|
102 |
-
|
103 |
-
@classmethod
|
104 |
-
def from_local(
|
105 |
-
cls,
|
106 |
-
config_path: str,
|
107 |
-
checkpoint_path: str,
|
108 |
-
compute_dtype: str | ComputeDtype = ComputeDtype.FLOAT32,
|
109 |
-
device: torch.device | None = None,
|
110 |
-
) -> "Dia":
|
111 |
-
"""Loads the Dia model from local configuration and checkpoint files.
|
112 |
-
|
113 |
-
Args:
|
114 |
-
config_path: Path to the configuration JSON file.
|
115 |
-
checkpoint_path: Path to the model checkpoint (.pth) file.
|
116 |
-
device: The device to load the model onto. If None, will automatically select the best available device.
|
117 |
-
|
118 |
-
Returns:
|
119 |
-
An instance of the Dia model loaded with weights and set to eval mode.
|
120 |
-
|
121 |
-
Raises:
|
122 |
-
FileNotFoundError: If the config or checkpoint file is not found.
|
123 |
-
RuntimeError: If there is an error loading the checkpoint.
|
124 |
-
"""
|
125 |
-
config = DiaConfig.load(config_path)
|
126 |
-
if config is None:
|
127 |
-
raise FileNotFoundError(f"Config file not found at {config_path}")
|
128 |
-
|
129 |
-
dia = cls(config, compute_dtype, device)
|
130 |
-
|
131 |
-
try:
|
132 |
-
state_dict = torch.load(checkpoint_path, map_location=dia.device)
|
133 |
-
dia.model.load_state_dict(state_dict)
|
134 |
-
except FileNotFoundError:
|
135 |
-
raise FileNotFoundError(f"Checkpoint file not found at {checkpoint_path}")
|
136 |
-
except Exception as e:
|
137 |
-
raise RuntimeError(f"Error loading checkpoint from {checkpoint_path}") from e
|
138 |
-
|
139 |
-
dia.model.to(dia.device)
|
140 |
-
dia.model.eval()
|
141 |
-
dia._load_dac_model()
|
142 |
-
return dia
|
143 |
-
|
144 |
-
@classmethod
|
145 |
-
def from_pretrained(
|
146 |
-
cls,
|
147 |
-
model_name: str = "nari-labs/Dia-1.6B",
|
148 |
-
compute_dtype: str | ComputeDtype = ComputeDtype.FLOAT32,
|
149 |
-
device: torch.device | None = None,
|
150 |
-
) -> "Dia":
|
151 |
-
"""Loads the Dia model from a Hugging Face Hub repository.
|
152 |
-
|
153 |
-
Downloads the configuration and checkpoint files from the specified
|
154 |
-
repository ID and then loads the model.
|
155 |
-
|
156 |
-
Args:
|
157 |
-
model_name: The Hugging Face Hub repository ID (e.g., "nari-labs/Dia-1.6B").
|
158 |
-
compute_dtype: The computation dtype to use.
|
159 |
-
device: The device to load the model onto. If None, will automatically select the best available device.
|
160 |
-
|
161 |
-
Returns:
|
162 |
-
An instance of the Dia model loaded with weights and set to eval mode.
|
163 |
-
|
164 |
-
Raises:
|
165 |
-
FileNotFoundError: If config or checkpoint download/loading fails.
|
166 |
-
RuntimeError: If there is an error loading the checkpoint.
|
167 |
-
"""
|
168 |
-
if isinstance(compute_dtype, str):
|
169 |
-
compute_dtype = ComputeDtype(compute_dtype)
|
170 |
-
loaded_model = DiaModel.from_pretrained(model_name, compute_dtype=compute_dtype.to_dtype())
|
171 |
-
config = loaded_model.config
|
172 |
-
dia = cls(config, compute_dtype, device)
|
173 |
-
|
174 |
-
dia.model = loaded_model
|
175 |
-
dia.model.to(dia.device)
|
176 |
-
dia.model.eval()
|
177 |
-
dia._load_dac_model()
|
178 |
-
return dia
|
179 |
-
|
180 |
-
def _load_dac_model(self):
|
181 |
-
try:
|
182 |
-
dac_model_path = dac.utils.download()
|
183 |
-
dac_model = dac.DAC.load(dac_model_path).to(self.device)
|
184 |
-
except Exception as e:
|
185 |
-
raise RuntimeError("Failed to load DAC model") from e
|
186 |
-
self.dac_model = dac_model
|
187 |
-
|
188 |
-
def _prepare_text_input(self, text: str) -> torch.Tensor:
|
189 |
-
"""Encodes text prompt, pads, and creates attention mask and positions."""
|
190 |
-
text_pad_value = self.config.data.text_pad_value
|
191 |
-
max_len = self.config.data.text_length
|
192 |
-
|
193 |
-
byte_text = text.encode("utf-8")
|
194 |
-
replaced_bytes = byte_text.replace(b"[S1]", b"\x01").replace(b"[S2]", b"\x02")
|
195 |
-
text_tokens = list(replaced_bytes)
|
196 |
-
|
197 |
-
current_len = len(text_tokens)
|
198 |
-
padding_needed = max_len - current_len
|
199 |
-
if padding_needed <= 0:
|
200 |
-
text_tokens = text_tokens[:max_len]
|
201 |
-
padded_text_np = np.array(text_tokens, dtype=np.uint8)
|
202 |
-
else:
|
203 |
-
padded_text_np = np.pad(
|
204 |
-
text_tokens,
|
205 |
-
(0, padding_needed),
|
206 |
-
mode="constant",
|
207 |
-
constant_values=text_pad_value,
|
208 |
-
).astype(np.uint8)
|
209 |
-
|
210 |
-
src_tokens = torch.from_numpy(padded_text_np).to(torch.long).to(self.device).unsqueeze(0) # [1, S]
|
211 |
-
return src_tokens
|
212 |
-
|
213 |
-
def _prepare_audio_prompt(self, audio_prompt: torch.Tensor | None) -> tuple[torch.Tensor, int]:
|
214 |
-
num_channels = self.config.data.channels
|
215 |
-
audio_bos_value = self.config.data.audio_bos_value
|
216 |
-
audio_pad_value = self.config.data.audio_pad_value
|
217 |
-
delay_pattern = self.config.data.delay_pattern
|
218 |
-
max_delay_pattern = max(delay_pattern)
|
219 |
-
|
220 |
-
prefill = torch.full(
|
221 |
-
(1, num_channels),
|
222 |
-
fill_value=audio_bos_value,
|
223 |
-
dtype=torch.int,
|
224 |
-
device=self.device,
|
225 |
-
)
|
226 |
-
|
227 |
-
prefill_step = 1
|
228 |
-
|
229 |
-
if audio_prompt is not None:
|
230 |
-
prefill_step += audio_prompt.shape[0]
|
231 |
-
prefill = torch.cat([prefill, audio_prompt], dim=0)
|
232 |
-
|
233 |
-
delay_pad_tensor = torch.full(
|
234 |
-
(max_delay_pattern, num_channels), fill_value=-1, dtype=torch.int, device=self.device
|
235 |
-
)
|
236 |
-
prefill = torch.cat([prefill, delay_pad_tensor], dim=0)
|
237 |
-
|
238 |
-
delay_precomp = build_delay_indices(
|
239 |
-
B=1,
|
240 |
-
T=prefill.shape[0],
|
241 |
-
C=num_channels,
|
242 |
-
delay_pattern=delay_pattern,
|
243 |
-
)
|
244 |
-
|
245 |
-
prefill = apply_audio_delay(
|
246 |
-
audio_BxTxC=prefill.unsqueeze(0),
|
247 |
-
pad_value=audio_pad_value,
|
248 |
-
bos_value=audio_bos_value,
|
249 |
-
precomp=delay_precomp,
|
250 |
-
).squeeze(0)
|
251 |
-
|
252 |
-
return prefill, prefill_step
|
253 |
-
|
254 |
-
def _prepare_generation(self, text: str, audio_prompt: str | torch.Tensor | None, verbose: bool):
|
255 |
-
enc_input_cond = self._prepare_text_input(text)
|
256 |
-
enc_input_uncond = torch.zeros_like(enc_input_cond)
|
257 |
-
enc_input = torch.cat([enc_input_uncond, enc_input_cond], dim=0)
|
258 |
-
|
259 |
-
if isinstance(audio_prompt, str):
|
260 |
-
audio_prompt = self.load_audio(audio_prompt)
|
261 |
-
prefill, prefill_step = self._prepare_audio_prompt(audio_prompt)
|
262 |
-
|
263 |
-
if verbose:
|
264 |
-
print("generate: data loaded")
|
265 |
-
|
266 |
-
enc_state = EncoderInferenceState.new(self.config, enc_input_cond)
|
267 |
-
encoder_out = self.model.encoder(enc_input, enc_state)
|
268 |
-
|
269 |
-
dec_cross_attn_cache = self.model.decoder.precompute_cross_attn_cache(encoder_out, enc_state.positions)
|
270 |
-
dec_state = DecoderInferenceState.new(
|
271 |
-
self.config, enc_state, encoder_out, dec_cross_attn_cache, self.compute_dtype
|
272 |
-
)
|
273 |
-
dec_output = DecoderOutput.new(self.config, self.device)
|
274 |
-
dec_output.prefill(prefill, prefill_step)
|
275 |
-
|
276 |
-
dec_step = prefill_step - 1
|
277 |
-
if dec_step > 0:
|
278 |
-
dec_state.prepare_step(0, dec_step)
|
279 |
-
tokens_BxTxC = dec_output.get_tokens_at(0, dec_step).unsqueeze(0).expand(2, -1, -1)
|
280 |
-
self.model.decoder.forward(tokens_BxTxC, dec_state)
|
281 |
-
|
282 |
-
return dec_state, dec_output
|
283 |
-
|
284 |
-
def _decoder_step(
|
285 |
-
self,
|
286 |
-
tokens_Bx1xC: torch.Tensor,
|
287 |
-
dec_state: DecoderInferenceState,
|
288 |
-
cfg_scale: float,
|
289 |
-
temperature: float,
|
290 |
-
top_p: float,
|
291 |
-
cfg_filter_top_k: int,
|
292 |
-
) -> torch.Tensor:
|
293 |
-
audio_eos_value = self.config.data.audio_eos_value
|
294 |
-
logits_Bx1xCxV = self.model.decoder.decode_step(tokens_Bx1xC, dec_state)
|
295 |
-
|
296 |
-
logits_last_BxCxV = logits_Bx1xCxV[:, -1, :, :]
|
297 |
-
uncond_logits_CxV = logits_last_BxCxV[0, :, :]
|
298 |
-
cond_logits_CxV = logits_last_BxCxV[1, :, :]
|
299 |
-
|
300 |
-
logits_CxV = cond_logits_CxV + cfg_scale * (cond_logits_CxV - uncond_logits_CxV)
|
301 |
-
logits_CxV[:, audio_eos_value + 1 :] = -torch.inf
|
302 |
-
logits_CxV[1:, audio_eos_value:] = -torch.inf
|
303 |
-
|
304 |
-
pred_C = _sample_next_token(
|
305 |
-
logits_CxV.float(),
|
306 |
-
temperature=temperature,
|
307 |
-
top_p=top_p,
|
308 |
-
cfg_filter_top_k=cfg_filter_top_k,
|
309 |
-
)
|
310 |
-
return pred_C
|
311 |
-
|
312 |
-
def _generate_output(self, generated_codes: torch.Tensor) -> np.ndarray:
|
313 |
-
num_channels = self.config.data.channels
|
314 |
-
seq_length = generated_codes.shape[0]
|
315 |
-
delay_pattern = self.config.data.delay_pattern
|
316 |
-
audio_pad_value = self.config.data.audio_pad_value
|
317 |
-
max_delay_pattern = max(delay_pattern)
|
318 |
-
|
319 |
-
revert_precomp = build_revert_indices(
|
320 |
-
B=1,
|
321 |
-
T=seq_length,
|
322 |
-
C=num_channels,
|
323 |
-
delay_pattern=delay_pattern,
|
324 |
-
)
|
325 |
-
|
326 |
-
codebook = revert_audio_delay(
|
327 |
-
audio_BxTxC=generated_codes.unsqueeze(0),
|
328 |
-
pad_value=audio_pad_value,
|
329 |
-
precomp=revert_precomp,
|
330 |
-
T=seq_length,
|
331 |
-
)[:, :-max_delay_pattern, :]
|
332 |
-
|
333 |
-
min_valid_index = 0
|
334 |
-
max_valid_index = 1023
|
335 |
-
invalid_mask = (codebook < min_valid_index) | (codebook > max_valid_index)
|
336 |
-
codebook[invalid_mask] = 0
|
337 |
-
|
338 |
-
audio = decode(self.dac_model, codebook.transpose(1, 2))
|
339 |
-
|
340 |
-
return audio.squeeze().cpu().numpy()
|
341 |
-
|
342 |
-
def load_audio(self, audio_path: str) -> torch.Tensor:
|
343 |
-
audio, sr = torchaudio.load(audio_path, channels_first=True) # C, T
|
344 |
-
if sr != DEFAULT_SAMPLE_RATE:
|
345 |
-
audio = torchaudio.functional.resample(audio, sr, DEFAULT_SAMPLE_RATE)
|
346 |
-
audio = audio.to(self.device).unsqueeze(0) # 1, C, T
|
347 |
-
audio_data = self.dac_model.preprocess(audio, DEFAULT_SAMPLE_RATE)
|
348 |
-
_, encoded_frame, _, _, _ = self.dac_model.encode(audio_data) # 1, C, T
|
349 |
-
return encoded_frame.squeeze(0).transpose(0, 1)
|
350 |
-
|
351 |
-
def save_audio(self, path: str, audio: np.ndarray):
|
352 |
-
import soundfile as sf
|
353 |
-
|
354 |
-
sf.write(path, audio, DEFAULT_SAMPLE_RATE)
|
355 |
-
|
356 |
-
@torch.inference_mode()
|
357 |
-
def generate(
|
358 |
-
self,
|
359 |
-
text: str,
|
360 |
-
max_tokens: int | None = None,
|
361 |
-
cfg_scale: float = 3.0,
|
362 |
-
temperature: float = 1.3,
|
363 |
-
top_p: float = 0.95,
|
364 |
-
use_torch_compile: bool = False,
|
365 |
-
cfg_filter_top_k: int = 35,
|
366 |
-
audio_prompt: str | torch.Tensor | None = None,
|
367 |
-
audio_prompt_path: str | None = None,
|
368 |
-
use_cfg_filter: bool | None = None,
|
369 |
-
verbose: bool = False,
|
370 |
-
) -> np.ndarray:
|
371 |
-
audio_eos_value = self.config.data.audio_eos_value
|
372 |
-
audio_pad_value = self.config.data.audio_pad_value
|
373 |
-
delay_pattern = self.config.data.delay_pattern
|
374 |
-
max_tokens = self.config.data.audio_length if max_tokens is None else max_tokens
|
375 |
-
max_delay_pattern = max(delay_pattern)
|
376 |
-
self.model.eval()
|
377 |
-
|
378 |
-
if audio_prompt_path:
|
379 |
-
print("Warning: audio_prompt_path is deprecated. Use audio_prompt instead.")
|
380 |
-
audio_prompt = audio_prompt_path
|
381 |
-
if use_cfg_filter is not None:
|
382 |
-
print("Warning: use_cfg_filter is deprecated.")
|
383 |
-
|
384 |
-
if verbose:
|
385 |
-
total_start_time = time.time()
|
386 |
-
|
387 |
-
dec_state, dec_output = self._prepare_generation(text, audio_prompt, verbose)
|
388 |
-
dec_step = dec_output.prefill_step - 1
|
389 |
-
|
390 |
-
bos_countdown = max_delay_pattern
|
391 |
-
eos_detected = False
|
392 |
-
eos_countdown = -1
|
393 |
-
|
394 |
-
if use_torch_compile:
|
395 |
-
step_fn = torch.compile(self._decoder_step, mode="default")
|
396 |
-
else:
|
397 |
-
step_fn = self._decoder_step
|
398 |
-
|
399 |
-
if verbose:
|
400 |
-
print("generate: starting generation loop")
|
401 |
-
if use_torch_compile:
|
402 |
-
print("generate: by using use_torch_compile=True, the first step would take long")
|
403 |
-
start_time = time.time()
|
404 |
-
|
405 |
-
while dec_step < max_tokens:
|
406 |
-
dec_state.prepare_step(dec_step)
|
407 |
-
tokens_Bx1xC = dec_output.get_tokens_at(dec_step).unsqueeze(0).expand(2, -1, -1)
|
408 |
-
pred_C = step_fn(
|
409 |
-
tokens_Bx1xC,
|
410 |
-
dec_state,
|
411 |
-
cfg_scale,
|
412 |
-
temperature,
|
413 |
-
top_p,
|
414 |
-
cfg_filter_top_k,
|
415 |
-
)
|
416 |
-
|
417 |
-
if (not eos_detected and pred_C[0] == audio_eos_value) or dec_step == max_tokens - max_delay_pattern - 1:
|
418 |
-
eos_detected = True
|
419 |
-
eos_countdown = max_delay_pattern
|
420 |
-
|
421 |
-
if eos_countdown > 0:
|
422 |
-
step_after_eos = max_delay_pattern - eos_countdown
|
423 |
-
for i, d in enumerate(delay_pattern):
|
424 |
-
if step_after_eos == d:
|
425 |
-
pred_C[i] = audio_eos_value
|
426 |
-
elif step_after_eos > d:
|
427 |
-
pred_C[i] = audio_pad_value
|
428 |
-
eos_countdown -= 1
|
429 |
-
|
430 |
-
bos_countdown = max(0, bos_countdown - 1)
|
431 |
-
dec_output.update_one(pred_C, dec_step + 1, bos_countdown > 0)
|
432 |
-
|
433 |
-
if eos_countdown == 0:
|
434 |
-
break
|
435 |
-
|
436 |
-
dec_step += 1
|
437 |
-
if verbose and dec_step % 86 == 0:
|
438 |
-
duration = time.time() - start_time
|
439 |
-
print(
|
440 |
-
f"generate step {dec_step}: speed={86 / duration:.3f} tokens/s, realtime factor={1 / duration:.3f}x"
|
441 |
-
)
|
442 |
-
start_time = time.time()
|
443 |
-
|
444 |
-
if dec_output.prefill_step >= dec_step + 1:
|
445 |
-
print("Warning: Nothing generated")
|
446 |
-
return None
|
447 |
-
|
448 |
-
generated_codes = dec_output.generated_tokens[dec_output.prefill_step : dec_step + 1, :]
|
449 |
-
|
450 |
-
if verbose:
|
451 |
-
total_step = dec_step + 1 - dec_output.prefill_step
|
452 |
-
total_duration = time.time() - total_start_time
|
453 |
-
print(f"generate: total step={total_step}, total duration={total_duration:.3f}s")
|
454 |
-
|
455 |
-
return self._generate_output(generated_codes)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dia/state.py
DELETED
@@ -1,207 +0,0 @@
|
|
1 |
-
from dataclasses import dataclass
|
2 |
-
|
3 |
-
import torch
|
4 |
-
|
5 |
-
from .config import DiaConfig
|
6 |
-
|
7 |
-
|
8 |
-
def create_attn_mask(
|
9 |
-
q_padding_mask_1d: torch.Tensor,
|
10 |
-
k_padding_mask_1d: torch.Tensor,
|
11 |
-
device: torch.device,
|
12 |
-
is_causal: bool = False,
|
13 |
-
) -> torch.Tensor:
|
14 |
-
"""
|
15 |
-
Creates the attention mask (self or cross) mimicking JAX segment ID logic.
|
16 |
-
"""
|
17 |
-
B1, Tq = q_padding_mask_1d.shape
|
18 |
-
B2, Tk = k_padding_mask_1d.shape
|
19 |
-
assert B1 == B2, "Query and key batch dimensions must match"
|
20 |
-
|
21 |
-
p_mask_q = q_padding_mask_1d.unsqueeze(2) # Shape [B, Tq, 1]
|
22 |
-
p_mask_k = k_padding_mask_1d.unsqueeze(1) # Shape [B, 1, Tk]
|
23 |
-
|
24 |
-
# Condition A: Non-padding query attends to non-padding key
|
25 |
-
non_pad_attends_non_pad = p_mask_q & p_mask_k # Shape [B, Tq, Tk]
|
26 |
-
|
27 |
-
# Condition B: Padding query attends to padding key
|
28 |
-
pad_attends_pad = (~p_mask_q) & (~p_mask_k) # Shape [B, Tq, Tk]
|
29 |
-
|
30 |
-
# Combine: True if padding status is compatible (both non-pad OR both pad)
|
31 |
-
mask = non_pad_attends_non_pad | pad_attends_pad # Shape [B, Tq, Tk]
|
32 |
-
|
33 |
-
if is_causal:
|
34 |
-
assert Tq == Tk, "Causal mask requires query and key sequence lengths to be equal"
|
35 |
-
causal_mask_2d = torch.tril(torch.ones((Tq, Tk), dtype=torch.bool, device=device)) # Shape [Tq, Tk]
|
36 |
-
causal_mask = mask & causal_mask_2d # Shape [B, Tq, Tk]
|
37 |
-
return causal_mask.unsqueeze(1) # Shape [B, 1, Tq, Tk]
|
38 |
-
else:
|
39 |
-
return mask.unsqueeze(1) # Shape [B, 1, Tq, Tk]
|
40 |
-
|
41 |
-
|
42 |
-
@dataclass
|
43 |
-
class EncoderInferenceState:
|
44 |
-
"""Parameters specifically for encoder inference."""
|
45 |
-
|
46 |
-
max_seq_len: int
|
47 |
-
device: torch.device
|
48 |
-
positions: torch.Tensor
|
49 |
-
padding_mask: torch.Tensor
|
50 |
-
attn_mask: torch.Tensor
|
51 |
-
|
52 |
-
@classmethod
|
53 |
-
def new(cls, config: DiaConfig, cond_src: torch.Tensor) -> "EncoderInferenceState":
|
54 |
-
"""Creates EtorchrInferenceParams from DiaConfig and a device."""
|
55 |
-
device = cond_src.device
|
56 |
-
|
57 |
-
positions = (
|
58 |
-
torch.arange(config.data.text_length, dtype=torch.float32, device=device).unsqueeze(0).expand(2, -1)
|
59 |
-
)
|
60 |
-
padding_mask = (cond_src != config.data.text_pad_value).to(device).expand(2, -1)
|
61 |
-
attn_mask = create_attn_mask(padding_mask, padding_mask, device, is_causal=False)
|
62 |
-
|
63 |
-
return cls(
|
64 |
-
max_seq_len=config.data.text_length,
|
65 |
-
device=device,
|
66 |
-
positions=positions,
|
67 |
-
padding_mask=padding_mask,
|
68 |
-
attn_mask=attn_mask,
|
69 |
-
)
|
70 |
-
|
71 |
-
|
72 |
-
class KVCache:
|
73 |
-
def __init__(
|
74 |
-
self,
|
75 |
-
num_heads: int,
|
76 |
-
max_len: int,
|
77 |
-
head_dim: int,
|
78 |
-
dtype: torch.dtype,
|
79 |
-
device: torch.device,
|
80 |
-
k: torch.Tensor | None = None,
|
81 |
-
v: torch.Tensor | None = None,
|
82 |
-
):
|
83 |
-
self.k = torch.zeros((2, num_heads, max_len, head_dim), dtype=dtype, device=device) if k is None else k
|
84 |
-
self.v = torch.zeros((2, num_heads, max_len, head_dim), dtype=dtype, device=device) if v is None else v
|
85 |
-
self.current_idx = torch.tensor(0)
|
86 |
-
|
87 |
-
@classmethod
|
88 |
-
def from_kv(cls, k: torch.Tensor, v: torch.Tensor) -> "KVCache":
|
89 |
-
return cls(
|
90 |
-
num_heads=k.shape[1],
|
91 |
-
max_len=k.shape[2],
|
92 |
-
head_dim=k.shape[3],
|
93 |
-
dtype=k.dtype,
|
94 |
-
device=k.device,
|
95 |
-
k=k,
|
96 |
-
v=v,
|
97 |
-
)
|
98 |
-
|
99 |
-
def update(self, k: torch.Tensor, v: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]:
|
100 |
-
self.k[:, :, self.current_idx : self.current_idx + 1, :] = k
|
101 |
-
self.v[:, :, self.current_idx : self.current_idx + 1, :] = v
|
102 |
-
self.current_idx += 1
|
103 |
-
return self.k[:, :, : self.current_idx, :], self.v[:, :, : self.current_idx, :]
|
104 |
-
|
105 |
-
def prefill(self, k: torch.Tensor, v: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]:
|
106 |
-
prefill_len = k.shape[2]
|
107 |
-
self.k[:, :, :prefill_len, :] = k
|
108 |
-
self.v[:, :, :prefill_len, :] = v
|
109 |
-
self.current_idx = prefill_len - 1
|
110 |
-
|
111 |
-
|
112 |
-
@dataclass
|
113 |
-
class DecoderInferenceState:
|
114 |
-
"""Parameters specifically for decoder inference."""
|
115 |
-
|
116 |
-
device: torch.device
|
117 |
-
dtype: torch.dtype
|
118 |
-
enc_out: torch.Tensor
|
119 |
-
enc_positions: torch.Tensor
|
120 |
-
dec_positions: torch.Tensor
|
121 |
-
dec_cross_attn_mask: torch.Tensor
|
122 |
-
self_attn_cache: list[KVCache]
|
123 |
-
cross_attn_cache: list[KVCache]
|
124 |
-
|
125 |
-
@classmethod
|
126 |
-
def new(
|
127 |
-
cls,
|
128 |
-
config: DiaConfig,
|
129 |
-
enc_state: EncoderInferenceState,
|
130 |
-
enc_out: torch.Tensor,
|
131 |
-
dec_cross_attn_cache: list[KVCache],
|
132 |
-
compute_dtype: torch.dtype,
|
133 |
-
) -> "DecoderInferenceState":
|
134 |
-
"""Creates DecoderInferenceParams from DiaConfig and a device."""
|
135 |
-
device = enc_out.device
|
136 |
-
max_audio_len = config.data.audio_length
|
137 |
-
|
138 |
-
dec_positions = torch.full((2, 1), fill_value=0, dtype=torch.long, device=device)
|
139 |
-
tgt_padding_mask = torch.ones((2, 1), dtype=torch.bool, device=device)
|
140 |
-
dec_cross_attn_mask = create_attn_mask(tgt_padding_mask, enc_state.padding_mask, device, is_causal=False)
|
141 |
-
|
142 |
-
self_attn_cache = [
|
143 |
-
KVCache(
|
144 |
-
config.model.decoder.kv_heads,
|
145 |
-
max_audio_len,
|
146 |
-
config.model.decoder.gqa_head_dim,
|
147 |
-
compute_dtype,
|
148 |
-
device,
|
149 |
-
)
|
150 |
-
for _ in range(config.model.decoder.n_layer)
|
151 |
-
]
|
152 |
-
|
153 |
-
return cls(
|
154 |
-
device=device,
|
155 |
-
dtype=compute_dtype,
|
156 |
-
enc_out=enc_out,
|
157 |
-
enc_positions=enc_state.positions,
|
158 |
-
dec_positions=dec_positions,
|
159 |
-
dec_cross_attn_mask=dec_cross_attn_mask,
|
160 |
-
self_attn_cache=self_attn_cache,
|
161 |
-
cross_attn_cache=dec_cross_attn_cache,
|
162 |
-
)
|
163 |
-
|
164 |
-
def prepare_step(self, step_from: int, step_to: int | None = None) -> None:
|
165 |
-
if step_to is None:
|
166 |
-
step_to = step_from + 1
|
167 |
-
self.dec_positions = (
|
168 |
-
torch.arange(step_from, step_to, dtype=torch.float32, device=self.device).unsqueeze(0).expand(2, -1)
|
169 |
-
)
|
170 |
-
|
171 |
-
|
172 |
-
@dataclass
|
173 |
-
class DecoderOutput:
|
174 |
-
generated_tokens: torch.Tensor
|
175 |
-
prefill_step: int
|
176 |
-
|
177 |
-
@classmethod
|
178 |
-
def new(cls, config: DiaConfig, device: torch.device) -> "DecoderOutput":
|
179 |
-
max_audio_len = config.data.audio_length
|
180 |
-
return cls(
|
181 |
-
generated_tokens=torch.full(
|
182 |
-
(max_audio_len, config.data.channels),
|
183 |
-
fill_value=-1,
|
184 |
-
dtype=torch.int,
|
185 |
-
device=device,
|
186 |
-
),
|
187 |
-
prefill_step=0,
|
188 |
-
)
|
189 |
-
|
190 |
-
def get_tokens_at(self, step_from: int, step_to: int | None = None) -> torch.Tensor:
|
191 |
-
if step_to is None:
|
192 |
-
step_to = step_from + 1
|
193 |
-
return self.generated_tokens[step_from:step_to, :]
|
194 |
-
|
195 |
-
def update_one(self, dec_out: torch.Tensor, step: int, apply_mask: bool = False):
|
196 |
-
if apply_mask:
|
197 |
-
mask = self.generated_tokens[step : step + 1, :] == -1
|
198 |
-
self.generated_tokens[step : step + 1, :] = torch.where(
|
199 |
-
mask, dec_out, self.generated_tokens[step : step + 1, :]
|
200 |
-
)
|
201 |
-
else:
|
202 |
-
self.generated_tokens[step : step + 1, :] = dec_out
|
203 |
-
|
204 |
-
def prefill(self, dec_out: torch.Tensor, prefill_step: int):
|
205 |
-
length = dec_out.shape[0]
|
206 |
-
self.generated_tokens[0:length, :] = dec_out
|
207 |
-
self.prefill_step = prefill_step
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dia_app_gradio.py
DELETED
@@ -1,378 +0,0 @@
|
|
1 |
-
import tempfile
|
2 |
-
import time
|
3 |
-
from pathlib import Path
|
4 |
-
from typing import Optional, Tuple
|
5 |
-
import spaces
|
6 |
-
|
7 |
-
import gradio as gr
|
8 |
-
import numpy as np
|
9 |
-
import soundfile as sf
|
10 |
-
import torch
|
11 |
-
|
12 |
-
from dia.model import Dia
|
13 |
-
|
14 |
-
|
15 |
-
# Load Nari model and config
|
16 |
-
print("Loading Nari model...")
|
17 |
-
try:
|
18 |
-
# Use the function from inference.py
|
19 |
-
model = Dia.from_pretrained("nari-labs/Dia-1.6B", compute_dtype="float32")
|
20 |
-
except Exception as e:
|
21 |
-
print(f"Error loading Nari model: {e}")
|
22 |
-
raise
|
23 |
-
|
24 |
-
|
25 |
-
@spaces.GPU
|
26 |
-
def run_inference(
|
27 |
-
text_input: str,
|
28 |
-
audio_prompt_input: Optional[Tuple[int, np.ndarray]],
|
29 |
-
max_new_tokens: int,
|
30 |
-
cfg_scale: float,
|
31 |
-
temperature: float,
|
32 |
-
top_p: float,
|
33 |
-
cfg_filter_top_k: int,
|
34 |
-
speed_factor: float,
|
35 |
-
):
|
36 |
-
"""
|
37 |
-
Runs Nari inference using the globally loaded model and provided inputs.
|
38 |
-
Uses temporary files for text and audio prompt compatibility with inference.generate.
|
39 |
-
"""
|
40 |
-
# global model, device # Access global model, config, device
|
41 |
-
|
42 |
-
if not text_input or text_input.isspace():
|
43 |
-
raise gr.Error("Text input cannot be empty.")
|
44 |
-
|
45 |
-
temp_txt_file_path = None
|
46 |
-
temp_audio_prompt_path = None
|
47 |
-
output_audio = (44100, np.zeros(1, dtype=np.float32))
|
48 |
-
|
49 |
-
try:
|
50 |
-
prompt_path_for_generate = None
|
51 |
-
if audio_prompt_input is not None:
|
52 |
-
sr, audio_data = audio_prompt_input
|
53 |
-
# Check if audio_data is valid
|
54 |
-
if (
|
55 |
-
audio_data is None or audio_data.size == 0 or audio_data.max() == 0
|
56 |
-
): # Check for silence/empty
|
57 |
-
gr.Warning("Audio prompt seems empty or silent, ignoring prompt.")
|
58 |
-
else:
|
59 |
-
# Save prompt audio to a temporary WAV file
|
60 |
-
with tempfile.NamedTemporaryFile(
|
61 |
-
mode="wb", suffix=".wav", delete=False
|
62 |
-
) as f_audio:
|
63 |
-
temp_audio_prompt_path = f_audio.name # Store path for cleanup
|
64 |
-
|
65 |
-
# Basic audio preprocessing for consistency
|
66 |
-
# Convert to float32 in [-1, 1] range if integer type
|
67 |
-
if np.issubdtype(audio_data.dtype, np.integer):
|
68 |
-
max_val = np.iinfo(audio_data.dtype).max
|
69 |
-
audio_data = audio_data.astype(np.float32) / max_val
|
70 |
-
elif not np.issubdtype(audio_data.dtype, np.floating):
|
71 |
-
gr.Warning(
|
72 |
-
f"Unsupported audio prompt dtype {audio_data.dtype}, attempting conversion."
|
73 |
-
)
|
74 |
-
# Attempt conversion, might fail for complex types
|
75 |
-
try:
|
76 |
-
audio_data = audio_data.astype(np.float32)
|
77 |
-
except Exception as conv_e:
|
78 |
-
raise gr.Error(
|
79 |
-
f"Failed to convert audio prompt to float32: {conv_e}"
|
80 |
-
)
|
81 |
-
|
82 |
-
# Ensure mono (average channels if stereo)
|
83 |
-
if audio_data.ndim > 1:
|
84 |
-
if audio_data.shape[0] == 2: # Assume (2, N)
|
85 |
-
audio_data = np.mean(audio_data, axis=0)
|
86 |
-
elif audio_data.shape[1] == 2: # Assume (N, 2)
|
87 |
-
audio_data = np.mean(audio_data, axis=1)
|
88 |
-
else:
|
89 |
-
gr.Warning(
|
90 |
-
f"Audio prompt has unexpected shape {audio_data.shape}, taking first channel/axis."
|
91 |
-
)
|
92 |
-
audio_data = (
|
93 |
-
audio_data[0]
|
94 |
-
if audio_data.shape[0] < audio_data.shape[1]
|
95 |
-
else audio_data[:, 0]
|
96 |
-
)
|
97 |
-
audio_data = np.ascontiguousarray(
|
98 |
-
audio_data
|
99 |
-
) # Ensure contiguous after slicing/mean
|
100 |
-
|
101 |
-
# Write using soundfile
|
102 |
-
try:
|
103 |
-
sf.write(
|
104 |
-
temp_audio_prompt_path, audio_data, sr, subtype="FLOAT"
|
105 |
-
) # Explicitly use FLOAT subtype
|
106 |
-
prompt_path_for_generate = temp_audio_prompt_path
|
107 |
-
print(
|
108 |
-
f"Created temporary audio prompt file: {temp_audio_prompt_path} (orig sr: {sr})"
|
109 |
-
)
|
110 |
-
except Exception as write_e:
|
111 |
-
print(f"Error writing temporary audio file: {write_e}")
|
112 |
-
raise gr.Error(f"Failed to save audio prompt: {write_e}")
|
113 |
-
|
114 |
-
# 3. Run Generation
|
115 |
-
|
116 |
-
start_time = time.time()
|
117 |
-
|
118 |
-
# Use torch.inference_mode() context manager for the generation call
|
119 |
-
with torch.inference_mode():
|
120 |
-
output_audio_np = model.generate(
|
121 |
-
text_input,
|
122 |
-
max_tokens=max_new_tokens,
|
123 |
-
cfg_scale=cfg_scale,
|
124 |
-
temperature=temperature,
|
125 |
-
top_p=top_p,
|
126 |
-
cfg_filter_top_k=cfg_filter_top_k, # Pass the value here
|
127 |
-
use_torch_compile=False, # Keep False for Gradio stability
|
128 |
-
audio_prompt=prompt_path_for_generate,
|
129 |
-
)
|
130 |
-
|
131 |
-
end_time = time.time()
|
132 |
-
print(f"Generation finished in {end_time - start_time:.2f} seconds.")
|
133 |
-
|
134 |
-
# 4. Convert Codes to Audio
|
135 |
-
if output_audio_np is not None:
|
136 |
-
# Get sample rate from the loaded DAC model
|
137 |
-
output_sr = 44100
|
138 |
-
|
139 |
-
# --- Slow down audio ---
|
140 |
-
original_len = len(output_audio_np)
|
141 |
-
# Ensure speed_factor is positive and not excessively small/large to avoid issues
|
142 |
-
speed_factor = max(0.1, min(speed_factor, 5.0))
|
143 |
-
target_len = int(
|
144 |
-
original_len / speed_factor
|
145 |
-
) # Target length based on speed_factor
|
146 |
-
if (
|
147 |
-
target_len != original_len and target_len > 0
|
148 |
-
): # Only interpolate if length changes and is valid
|
149 |
-
x_original = np.arange(original_len)
|
150 |
-
x_resampled = np.linspace(0, original_len - 1, target_len)
|
151 |
-
resampled_audio_np = np.interp(x_resampled, x_original, output_audio_np)
|
152 |
-
output_audio = (
|
153 |
-
output_sr,
|
154 |
-
resampled_audio_np.astype(np.float32),
|
155 |
-
) # Use resampled audio
|
156 |
-
print(
|
157 |
-
f"Resampled audio from {original_len} to {target_len} samples for {speed_factor:.2f}x speed."
|
158 |
-
)
|
159 |
-
else:
|
160 |
-
output_audio = (
|
161 |
-
output_sr,
|
162 |
-
output_audio_np,
|
163 |
-
) # Keep original if calculation fails or no change
|
164 |
-
print(f"Skipping audio speed adjustment (factor: {speed_factor:.2f}).")
|
165 |
-
# --- End slowdown ---
|
166 |
-
|
167 |
-
print(
|
168 |
-
f"Audio conversion successful. Final shape: {output_audio[1].shape}, Sample Rate: {output_sr}"
|
169 |
-
)
|
170 |
-
|
171 |
-
# Explicitly convert to int16 to prevent Gradio warning
|
172 |
-
if (
|
173 |
-
output_audio[1].dtype == np.float32
|
174 |
-
or output_audio[1].dtype == np.float64
|
175 |
-
):
|
176 |
-
audio_for_gradio = np.clip(output_audio[1], -1.0, 1.0)
|
177 |
-
audio_for_gradio = (audio_for_gradio * 32767).astype(np.int16)
|
178 |
-
output_audio = (output_sr, audio_for_gradio)
|
179 |
-
print("Converted audio to int16 for Gradio output.")
|
180 |
-
|
181 |
-
else:
|
182 |
-
print("\nGeneration finished, but no valid tokens were produced.")
|
183 |
-
# Return default silence
|
184 |
-
gr.Warning("Generation produced no output.")
|
185 |
-
|
186 |
-
except Exception as e:
|
187 |
-
print(f"Error during inference: {e}")
|
188 |
-
import traceback
|
189 |
-
|
190 |
-
traceback.print_exc()
|
191 |
-
# Re-raise as Gradio error to display nicely in the UI
|
192 |
-
raise gr.Error(f"Inference failed: {e}")
|
193 |
-
|
194 |
-
finally:
|
195 |
-
# 5. Cleanup Temporary Files defensively
|
196 |
-
if temp_txt_file_path and Path(temp_txt_file_path).exists():
|
197 |
-
try:
|
198 |
-
Path(temp_txt_file_path).unlink()
|
199 |
-
print(f"Deleted temporary text file: {temp_txt_file_path}")
|
200 |
-
except OSError as e:
|
201 |
-
print(
|
202 |
-
f"Warning: Error deleting temporary text file {temp_txt_file_path}: {e}"
|
203 |
-
)
|
204 |
-
if temp_audio_prompt_path and Path(temp_audio_prompt_path).exists():
|
205 |
-
try:
|
206 |
-
Path(temp_audio_prompt_path).unlink()
|
207 |
-
print(f"Deleted temporary audio prompt file: {temp_audio_prompt_path}")
|
208 |
-
except OSError as e:
|
209 |
-
print(
|
210 |
-
f"Warning: Error deleting temporary audio prompt file {temp_audio_prompt_path}: {e}"
|
211 |
-
)
|
212 |
-
|
213 |
-
return output_audio
|
214 |
-
|
215 |
-
|
216 |
-
# --- Create Gradio Interface ---
|
217 |
-
css = """
|
218 |
-
#col-container {max-width: 90%; margin-left: auto; margin-right: auto;}
|
219 |
-
"""
|
220 |
-
# Attempt to load default text from example.txt
|
221 |
-
default_text = "[S1] Dia is an open weights text to dialogue model. \n[S2] You get full control over scripts and voices. \n[S1] Wow. Amazing. (laughs) \n[S2] Try it now on Git hub or Hugging Face."
|
222 |
-
example_txt_path = Path("./example.txt")
|
223 |
-
if example_txt_path.exists():
|
224 |
-
try:
|
225 |
-
default_text = example_txt_path.read_text(encoding="utf-8").strip()
|
226 |
-
if not default_text: # Handle empty example file
|
227 |
-
default_text = "Example text file was empty."
|
228 |
-
except Exception as e:
|
229 |
-
print(f"Warning: Could not read example.txt: {e}")
|
230 |
-
|
231 |
-
|
232 |
-
# Build Gradio UI
|
233 |
-
with gr.Blocks(css=css) as demo:
|
234 |
-
gr.Markdown("# Nari Text-to-Speech Synthesis")
|
235 |
-
|
236 |
-
with gr.Row(equal_height=False):
|
237 |
-
with gr.Column(scale=1):
|
238 |
-
text_input = gr.Textbox(
|
239 |
-
label="Input Text",
|
240 |
-
placeholder="Enter text here...",
|
241 |
-
value=default_text,
|
242 |
-
lines=5, # Increased lines
|
243 |
-
)
|
244 |
-
audio_prompt_input = gr.Audio(
|
245 |
-
label="Audio Prompt (Optional)",
|
246 |
-
show_label=True,
|
247 |
-
sources=["upload", "microphone"],
|
248 |
-
type="numpy",
|
249 |
-
)
|
250 |
-
with gr.Accordion("Generation Parameters", open=False):
|
251 |
-
max_new_tokens = gr.Slider(
|
252 |
-
label="Max New Tokens (Audio Length)",
|
253 |
-
minimum=860,
|
254 |
-
maximum=3072,
|
255 |
-
value=model.config.data.audio_length, # Use config default if available, else fallback
|
256 |
-
step=50,
|
257 |
-
info="Controls the maximum length of the generated audio (more tokens = longer audio).",
|
258 |
-
)
|
259 |
-
cfg_scale = gr.Slider(
|
260 |
-
label="CFG Scale (Guidance Strength)",
|
261 |
-
minimum=1.0,
|
262 |
-
maximum=5.0,
|
263 |
-
value=3.0, # Default from inference.py
|
264 |
-
step=0.1,
|
265 |
-
info="Higher values increase adherence to the text prompt.",
|
266 |
-
)
|
267 |
-
temperature = gr.Slider(
|
268 |
-
label="Temperature (Randomness)",
|
269 |
-
minimum=1.0,
|
270 |
-
maximum=1.5,
|
271 |
-
value=1.3, # Default from inference.py
|
272 |
-
step=0.05,
|
273 |
-
info="Lower values make the output more deterministic, higher values increase randomness.",
|
274 |
-
)
|
275 |
-
top_p = gr.Slider(
|
276 |
-
label="Top P (Nucleus Sampling)",
|
277 |
-
minimum=0.80,
|
278 |
-
maximum=1.0,
|
279 |
-
value=0.95, # Default from inference.py
|
280 |
-
step=0.01,
|
281 |
-
info="Filters vocabulary to the most likely tokens cumulatively reaching probability P.",
|
282 |
-
)
|
283 |
-
cfg_filter_top_k = gr.Slider(
|
284 |
-
label="CFG Filter Top K",
|
285 |
-
minimum=15,
|
286 |
-
maximum=50,
|
287 |
-
value=30,
|
288 |
-
step=1,
|
289 |
-
info="Top k filter for CFG guidance.",
|
290 |
-
)
|
291 |
-
speed_factor_slider = gr.Slider(
|
292 |
-
label="Speed Factor",
|
293 |
-
minimum=0.8,
|
294 |
-
maximum=1.0,
|
295 |
-
value=0.94,
|
296 |
-
step=0.02,
|
297 |
-
info="Adjusts the speed of the generated audio (1.0 = original speed).",
|
298 |
-
)
|
299 |
-
|
300 |
-
run_button = gr.Button("Generate Audio", variant="primary")
|
301 |
-
|
302 |
-
with gr.Column(scale=1):
|
303 |
-
audio_output = gr.Audio(
|
304 |
-
label="Generated Audio",
|
305 |
-
type="numpy",
|
306 |
-
autoplay=False,
|
307 |
-
)
|
308 |
-
|
309 |
-
# Link button click to function
|
310 |
-
run_button.click(
|
311 |
-
fn=run_inference,
|
312 |
-
inputs=[
|
313 |
-
text_input,
|
314 |
-
audio_prompt_input,
|
315 |
-
max_new_tokens,
|
316 |
-
cfg_scale,
|
317 |
-
temperature,
|
318 |
-
top_p,
|
319 |
-
cfg_filter_top_k,
|
320 |
-
speed_factor_slider,
|
321 |
-
],
|
322 |
-
outputs=[audio_output], # Add status_output here if using it
|
323 |
-
api_name="generate_audio",
|
324 |
-
)
|
325 |
-
|
326 |
-
# Add examples (ensure the prompt path is correct or remove it if example file doesn't exist)
|
327 |
-
example_prompt_path = "./example_prompt.mp3" # Adjust if needed
|
328 |
-
examples_list = [
|
329 |
-
[
|
330 |
-
"[S1] Oh fire! Oh my goodness! What's the procedure? What to we do people? The smoke could be coming through an air duct! \n[S2] Oh my god! Okay.. it's happening. Everybody stay calm! \n[S1] What's the procedure... \n[S2] Everybody stay fucking calm!!!... Everybody fucking calm down!!!!! \n[S1] No! No! If you touch the handle, if its hot there might be a fire down the hallway! ",
|
331 |
-
None,
|
332 |
-
3072,
|
333 |
-
3.0,
|
334 |
-
1.3,
|
335 |
-
0.95,
|
336 |
-
35,
|
337 |
-
0.94,
|
338 |
-
],
|
339 |
-
[
|
340 |
-
"[S1] Open weights text to dialogue model. \n[S2] You get full control over scripts and voices. \n[S1] I'm biased, but I think we clearly won. \n[S2] Hard to disagree. (laughs) \n[S1] Thanks for listening to this demo. \n[S2] Try it now on Git hub and Hugging Face. \n[S1] If you liked our model, please give us a star and share to your friends. \n[S2] This was Nari Labs.",
|
341 |
-
example_prompt_path if Path(example_prompt_path).exists() else None,
|
342 |
-
3072,
|
343 |
-
3.0,
|
344 |
-
1.3,
|
345 |
-
0.95,
|
346 |
-
35,
|
347 |
-
0.94,
|
348 |
-
],
|
349 |
-
]
|
350 |
-
|
351 |
-
if examples_list:
|
352 |
-
gr.Examples(
|
353 |
-
examples=examples_list,
|
354 |
-
inputs=[
|
355 |
-
text_input,
|
356 |
-
audio_prompt_input,
|
357 |
-
max_new_tokens,
|
358 |
-
cfg_scale,
|
359 |
-
temperature,
|
360 |
-
top_p,
|
361 |
-
cfg_filter_top_k,
|
362 |
-
speed_factor_slider,
|
363 |
-
],
|
364 |
-
outputs=[audio_output],
|
365 |
-
fn=run_inference,
|
366 |
-
cache_examples=False,
|
367 |
-
label="Examples (Click to Run)",
|
368 |
-
)
|
369 |
-
else:
|
370 |
-
gr.Markdown("_(No examples configured or example prompt file missing)_")
|
371 |
-
|
372 |
-
# --- Launch the App ---
|
373 |
-
if __name__ == "__main__":
|
374 |
-
print("Launching Gradio interface...")
|
375 |
-
|
376 |
-
# set `GRADIO_SERVER_NAME`, `GRADIO_SERVER_PORT` env vars to override default values
|
377 |
-
# use `GRADIO_SERVER_NAME=0.0.0.0` for Docker
|
378 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
utils/tts.py
CHANGED
@@ -1,72 +1,125 @@
|
|
1 |
import logging
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
# Configure logging
|
4 |
logger = logging.getLogger(__name__)
|
5 |
|
6 |
-
# Import the factory pattern implementation
|
7 |
-
from utils.tts_factory import TTSFactory
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
-
# Import legacy functions for backward compatibility
|
22 |
-
from utils.tts_kokoro import generate_speech as kokoro_generate_speech
|
23 |
-
from utils.tts_kokoro_space import generate_speech as kokoro_space_generate_speech
|
24 |
-
from utils.tts_dia import generate_speech as dia_generate_speech
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
"""Get the best available TTS engine
|
29 |
|
30 |
Args:
|
|
|
|
|
31 |
lang_code (str): Language code for the engine
|
32 |
|
33 |
Returns:
|
34 |
-
|
35 |
"""
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
-
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
Args:
|
46 |
-
|
47 |
-
|
48 |
-
lang_code (str): Language code
|
|
|
|
|
49 |
|
50 |
Returns:
|
51 |
-
|
52 |
"""
|
53 |
-
|
|
|
54 |
|
55 |
-
|
56 |
-
def
|
57 |
-
|
58 |
-
|
59 |
-
This is a legacy function maintained for backward compatibility.
|
60 |
-
New code should use the factory pattern implementation directly.
|
61 |
|
62 |
Args:
|
63 |
text (str): Input text to synthesize
|
64 |
-
|
|
|
65 |
voice (str): Voice ID to use
|
66 |
speed (float): Speech speed multiplier
|
67 |
|
68 |
-
|
69 |
-
|
70 |
"""
|
71 |
-
engine =
|
72 |
-
|
|
|
1 |
import logging
|
2 |
+
from typing import Optional, Generator, Tuple, List, Dict, Any
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
# Import the base class and dummy implementation
|
6 |
+
from utils.tts_simplified import TTSBase, DummyTTS
|
7 |
+
|
8 |
+
# Import the specific TTS implementations
|
9 |
+
from utils.tts_kokoro_simplified import KokoroTTS, KOKORO_AVAILABLE
|
10 |
+
from utils.tts_dia_simplified import DiaTTS, DIA_AVAILABLE
|
11 |
+
from utils.tts_cosyvoice2_simplified import CosyVoice2TTS, COSYVOICE2_AVAILABLE
|
12 |
|
13 |
# Configure logging
|
14 |
logger = logging.getLogger(__name__)
|
15 |
|
|
|
|
|
16 |
|
17 |
+
def get_available_engines() -> List[str]:
|
18 |
+
"""Get a list of available TTS engines
|
19 |
+
|
20 |
+
Returns:
|
21 |
+
List[str]: List of available engine names
|
22 |
+
"""
|
23 |
+
available = []
|
24 |
+
|
25 |
+
if KOKORO_AVAILABLE:
|
26 |
+
available.append('kokoro')
|
27 |
+
|
28 |
+
if DIA_AVAILABLE:
|
29 |
+
available.append('dia')
|
30 |
+
|
31 |
+
if COSYVOICE2_AVAILABLE:
|
32 |
+
available.append('cosyvoice2')
|
33 |
+
|
34 |
+
# Dummy is always available
|
35 |
+
available.append('dummy')
|
36 |
+
|
37 |
+
return available
|
38 |
|
|
|
|
|
|
|
|
|
39 |
|
40 |
+
def get_tts_engine(engine_type: Optional[str] = None, lang_code: str = 'z') -> TTSBase:
|
41 |
+
"""Get a TTS engine instance
|
|
|
42 |
|
43 |
Args:
|
44 |
+
engine_type (str, optional): Type of engine to create ('kokoro', 'dia', 'cosyvoice2', 'dummy')
|
45 |
+
If None, the best available engine will be used
|
46 |
lang_code (str): Language code for the engine
|
47 |
|
48 |
Returns:
|
49 |
+
TTSBase: An instance of a TTS engine
|
50 |
"""
|
51 |
+
# Get available engines
|
52 |
+
available_engines = get_available_engines()
|
53 |
+
logger.info(f"Available TTS engines: {available_engines}")
|
54 |
+
|
55 |
+
# If engine_type is specified, try to create that specific engine
|
56 |
+
if engine_type is not None:
|
57 |
+
if engine_type == 'kokoro' and KOKORO_AVAILABLE:
|
58 |
+
logger.info("Creating Kokoro TTS engine")
|
59 |
+
return KokoroTTS(lang_code)
|
60 |
+
elif engine_type == 'dia' and DIA_AVAILABLE:
|
61 |
+
logger.info("Creating Dia TTS engine")
|
62 |
+
return DiaTTS(lang_code)
|
63 |
+
elif engine_type == 'cosyvoice2' and COSYVOICE2_AVAILABLE:
|
64 |
+
logger.info("Creating CosyVoice2 TTS engine")
|
65 |
+
return CosyVoice2TTS(lang_code)
|
66 |
+
elif engine_type == 'dummy':
|
67 |
+
logger.info("Creating Dummy TTS engine")
|
68 |
+
return DummyTTS(lang_code)
|
69 |
+
else:
|
70 |
+
logger.warning(f"Requested engine '{engine_type}' is not available")
|
71 |
|
72 |
+
# If no specific engine is requested or the requested engine is not available,
|
73 |
+
# use the best available engine based on priority
|
74 |
+
priority_order = ['cosyvoice2', 'kokoro', 'dia', 'dummy']
|
75 |
+
for engine in priority_order:
|
76 |
+
if engine in available_engines:
|
77 |
+
logger.info(f"Using best available engine: {engine}")
|
78 |
+
if engine == 'kokoro':
|
79 |
+
return KokoroTTS(lang_code)
|
80 |
+
elif engine == 'dia':
|
81 |
+
return DiaTTS(lang_code)
|
82 |
+
elif engine == 'cosyvoice2':
|
83 |
+
return CosyVoice2TTS(lang_code)
|
84 |
+
elif engine == 'dummy':
|
85 |
+
return DummyTTS(lang_code)
|
86 |
+
|
87 |
+
# Fallback to dummy engine if no engines are available
|
88 |
+
logger.warning("No TTS engines available, falling back to dummy engine")
|
89 |
+
return DummyTTS(lang_code)
|
90 |
+
|
91 |
+
|
92 |
+
def generate_speech(text: str, engine_type: Optional[str] = None, lang_code: str = 'z',
|
93 |
+
voice: str = 'default', speed: float = 1.0) -> Optional[str]:
|
94 |
+
"""Generate speech using the specified or best available TTS engine
|
95 |
|
96 |
Args:
|
97 |
+
text (str): Input text to synthesize
|
98 |
+
engine_type (str, optional): Type of engine to use
|
99 |
+
lang_code (str): Language code
|
100 |
+
voice (str): Voice ID to use
|
101 |
+
speed (float): Speech speed multiplier
|
102 |
|
103 |
Returns:
|
104 |
+
Optional[str]: Path to the generated audio file or None if generation fails
|
105 |
"""
|
106 |
+
engine = get_tts_engine(engine_type, lang_code)
|
107 |
+
return engine.generate_speech(text, voice, speed)
|
108 |
|
109 |
+
|
110 |
+
def generate_speech_stream(text: str, engine_type: Optional[str] = None, lang_code: str = 'z',
|
111 |
+
voice: str = 'default', speed: float = 1.0) -> Generator[Tuple[int, np.ndarray], None, None]:
|
112 |
+
"""Generate speech stream using the specified or best available TTS engine
|
|
|
|
|
113 |
|
114 |
Args:
|
115 |
text (str): Input text to synthesize
|
116 |
+
engine_type (str, optional): Type of engine to use
|
117 |
+
lang_code (str): Language code
|
118 |
voice (str): Voice ID to use
|
119 |
speed (float): Speech speed multiplier
|
120 |
|
121 |
+
Yields:
|
122 |
+
tuple: (sample_rate, audio_data) pairs for each segment
|
123 |
"""
|
124 |
+
engine = get_tts_engine(engine_type, lang_code)
|
125 |
+
yield from engine.generate_speech_stream(text, voice, speed)
|
utils/tts_README.md
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# TTS Structure
|
2 |
+
|
3 |
+
This directory contains a Text-to-Speech (TTS) implementation that supports three specific models:
|
4 |
+
|
5 |
+
1. Kokoro: https://github.com/hexgrad/kokoro
|
6 |
+
2. Dia: https://github.com/nari-labs/dia
|
7 |
+
3. CosyVoice2: https://github.com/nari-labs/dia
|
8 |
+
|
9 |
+
## Structure
|
10 |
+
|
11 |
+
The TTS implementation follows a simple, clean structure:
|
12 |
+
|
13 |
+
- `tts.py`: Contains the base `TTSBase` abstract class and `DummyTTS` implementation
|
14 |
+
- `tts_kokoro.py`: Kokoro TTS implementation
|
15 |
+
- `tts_dia.py`: Dia TTS implementation
|
16 |
+
- `tts_cosyvoice2.py`: CosyVoice2 TTS implementation
|
17 |
+
- `tts_main.py`: Main entry point for TTS functionality
|
18 |
+
|
19 |
+
## Usage
|
20 |
+
|
21 |
+
```python
|
22 |
+
# Import the main TTS functions
|
23 |
+
from utils.tts_main import generate_speech, generate_speech_stream, get_tts_engine
|
24 |
+
|
25 |
+
# Generate speech using the best available engine
|
26 |
+
audio_path = generate_speech("Hello, world!")
|
27 |
+
|
28 |
+
# Generate speech using a specific engine
|
29 |
+
audio_path = generate_speech("Hello, world!", engine_type="kokoro")
|
30 |
+
|
31 |
+
# Generate speech with specific parameters
|
32 |
+
audio_path = generate_speech(
|
33 |
+
"Hello, world!",
|
34 |
+
engine_type="dia",
|
35 |
+
lang_code="en",
|
36 |
+
voice="default",
|
37 |
+
speed=1.0
|
38 |
+
)
|
39 |
+
|
40 |
+
# Generate speech stream
|
41 |
+
for sample_rate, audio_data in generate_speech_stream("Hello, world!"):
|
42 |
+
# Process audio data
|
43 |
+
pass
|
44 |
+
|
45 |
+
# Get a specific TTS engine instance
|
46 |
+
engine = get_tts_engine("kokoro")
|
47 |
+
audio_path = engine.generate_speech("Hello, world!")
|
48 |
+
```
|
49 |
+
|
50 |
+
## Error Handling
|
51 |
+
|
52 |
+
All TTS implementations include robust error handling:
|
53 |
+
|
54 |
+
1. Each implementation checks for the availability of its dependencies
|
55 |
+
2. If a specific engine fails, it automatically falls back to the `DummyTTS` implementation
|
56 |
+
3. The main module prioritizes engines based on availability
|
57 |
+
|
58 |
+
## Adding New Engines
|
59 |
+
|
60 |
+
To add a new TTS engine:
|
61 |
+
|
62 |
+
1. Create a new file `tts_<engine_name>.py`
|
63 |
+
2. Implement a class that inherits from `TTSBase`
|
64 |
+
3. Add the engine to the available engines list in `tts_main.py`
|
utils/tts_base.py
CHANGED
@@ -1,50 +1,46 @@
|
|
|
|
1 |
import os
|
2 |
import time
|
3 |
-
import logging
|
4 |
-
import soundfile as sf
|
5 |
import numpy as np
|
|
|
|
|
6 |
from abc import ABC, abstractmethod
|
7 |
-
from typing import Tuple, Generator, Optional
|
8 |
|
9 |
# Configure logging
|
10 |
logger = logging.getLogger(__name__)
|
11 |
|
12 |
-
|
|
|
13 |
"""Base class for all TTS engines
|
14 |
|
15 |
This abstract class defines the interface that all TTS engines must implement.
|
16 |
-
It also provides common utility methods for file handling and audio generation.
|
17 |
"""
|
18 |
|
19 |
def __init__(self, lang_code: str = 'z'):
|
20 |
"""Initialize the TTS engine
|
21 |
|
22 |
Args:
|
23 |
-
lang_code (str): Language code
|
24 |
-
'j' for Japanese, 'z' for Mandarin Chinese)
|
25 |
-
Note: Not all engines support all language codes
|
26 |
"""
|
27 |
self.lang_code = lang_code
|
28 |
-
logger.info(f"Initializing {self.__class__.__name__} with language code: {lang_code}")
|
29 |
|
30 |
@abstractmethod
|
31 |
-
def generate_speech(self, text: str, voice: str = '
|
32 |
"""Generate speech from text
|
33 |
|
34 |
Args:
|
35 |
text (str): Input text to synthesize
|
36 |
-
voice (str): Voice ID to use
|
37 |
-
|
38 |
-
speed (float): Speech speed multiplier (0.5 to 2.0)
|
39 |
-
Note: Not all engines support speed adjustment
|
40 |
|
41 |
Returns:
|
42 |
-
Optional[str]: Path to the generated audio file
|
43 |
"""
|
44 |
pass
|
45 |
|
46 |
-
|
47 |
-
|
|
|
48 |
|
49 |
Args:
|
50 |
text (str): Input text to synthesize
|
@@ -54,93 +50,75 @@ class TTSEngineBase(ABC):
|
|
54 |
Yields:
|
55 |
tuple: (sample_rate, audio_data) pairs for each segment
|
56 |
"""
|
57 |
-
|
58 |
-
output_path = self.generate_speech(text, voice, speed)
|
59 |
-
audio_data, sample_rate = sf.read(output_path)
|
60 |
-
yield sample_rate, audio_data
|
61 |
-
|
62 |
-
def _create_output_dir(self) -> str:
|
63 |
-
"""Create output directory for audio files
|
64 |
-
|
65 |
-
Returns:
|
66 |
-
str: Path to the output directory
|
67 |
-
"""
|
68 |
-
output_dir = "temp/outputs"
|
69 |
-
os.makedirs(output_dir, exist_ok=True)
|
70 |
-
return output_dir
|
71 |
|
72 |
-
def _generate_output_path(self, prefix: str = "
|
73 |
-
"""Generate a unique output path for audio
|
74 |
|
75 |
Args:
|
76 |
-
prefix (str): Prefix for the
|
|
|
77 |
|
78 |
Returns:
|
79 |
str: Path to the output file
|
80 |
"""
|
81 |
-
|
82 |
-
|
83 |
-
|
|
|
|
|
84 |
|
85 |
|
86 |
-
class
|
87 |
-
"""Dummy TTS engine that generates
|
88 |
|
89 |
-
This
|
90 |
"""
|
91 |
|
92 |
-
def
|
93 |
-
|
94 |
-
logger.warning("Using dummy TTS implementation as no other engines are available")
|
95 |
-
|
96 |
-
def generate_speech(self, text: str, voice: str = 'af_heart', speed: float = 1.0) -> str:
|
97 |
-
"""Generate a dummy audio file with a simple sine wave
|
98 |
|
99 |
Args:
|
100 |
text (str): Input text (not used)
|
101 |
voice (str): Voice ID (not used)
|
102 |
-
speed (float):
|
103 |
|
104 |
Returns:
|
105 |
-
str: Path to the generated
|
106 |
"""
|
107 |
logger.info(f"Generating dummy speech for text length: {len(text)}")
|
108 |
|
109 |
-
# Generate unique output path
|
110 |
-
output_path = self._generate_output_path("dummy")
|
111 |
-
|
112 |
# Generate a simple sine wave
|
113 |
sample_rate = 24000
|
114 |
-
duration =
|
115 |
-
t = np.linspace(0, duration, int(sample_rate * duration), False)
|
116 |
-
|
117 |
|
118 |
-
# Save
|
119 |
-
|
120 |
-
sf.write(output_path,
|
121 |
-
logger.info(f"Dummy audio generation complete: {output_path}")
|
122 |
|
|
|
123 |
return output_path
|
124 |
|
125 |
-
def generate_speech_stream(self, text: str, voice: str = '
|
126 |
-
"""Generate dummy
|
127 |
|
128 |
Args:
|
129 |
text (str): Input text (not used)
|
130 |
voice (str): Voice ID (not used)
|
131 |
-
speed (float):
|
132 |
|
133 |
Yields:
|
134 |
-
tuple: (sample_rate, audio_data) pairs
|
135 |
"""
|
136 |
logger.info(f"Generating dummy speech stream for text length: {len(text)}")
|
137 |
|
|
|
138 |
sample_rate = 24000
|
139 |
-
duration =
|
|
|
|
|
140 |
|
141 |
-
#
|
142 |
-
|
143 |
-
t = np.linspace(0, duration, int(sample_rate * duration), False)
|
144 |
-
freq = 440 + (i * 220) # Different frequency for each chunk
|
145 |
-
tone = np.sin(2 * np.pi * freq * t) * 0.3
|
146 |
-
yield sample_rate, tone
|
|
|
1 |
+
import logging
|
2 |
import os
|
3 |
import time
|
|
|
|
|
4 |
import numpy as np
|
5 |
+
import soundfile as sf
|
6 |
+
from typing import Optional, Generator, Tuple, List
|
7 |
from abc import ABC, abstractmethod
|
|
|
8 |
|
9 |
# Configure logging
|
10 |
logger = logging.getLogger(__name__)
|
11 |
|
12 |
+
|
13 |
+
class TTSBase(ABC):
|
14 |
"""Base class for all TTS engines
|
15 |
|
16 |
This abstract class defines the interface that all TTS engines must implement.
|
|
|
17 |
"""
|
18 |
|
19 |
def __init__(self, lang_code: str = 'z'):
|
20 |
"""Initialize the TTS engine
|
21 |
|
22 |
Args:
|
23 |
+
lang_code (str): Language code for the engine
|
|
|
|
|
24 |
"""
|
25 |
self.lang_code = lang_code
|
|
|
26 |
|
27 |
@abstractmethod
|
28 |
+
def generate_speech(self, text: str, voice: str = 'default', speed: float = 1.0) -> Optional[str]:
|
29 |
"""Generate speech from text
|
30 |
|
31 |
Args:
|
32 |
text (str): Input text to synthesize
|
33 |
+
voice (str): Voice ID to use
|
34 |
+
speed (float): Speech speed multiplier
|
|
|
|
|
35 |
|
36 |
Returns:
|
37 |
+
Optional[str]: Path to the generated audio file or None if generation fails
|
38 |
"""
|
39 |
pass
|
40 |
|
41 |
+
@abstractmethod
|
42 |
+
def generate_speech_stream(self, text: str, voice: str = 'default', speed: float = 1.0) -> Generator[Tuple[int, np.ndarray], None, None]:
|
43 |
+
"""Generate speech stream from text
|
44 |
|
45 |
Args:
|
46 |
text (str): Input text to synthesize
|
|
|
50 |
Yields:
|
51 |
tuple: (sample_rate, audio_data) pairs for each segment
|
52 |
"""
|
53 |
+
pass
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
+
def _generate_output_path(self, prefix: str = "tts", extension: str = "wav") -> str:
|
56 |
+
"""Generate a unique output path for the audio file
|
57 |
|
58 |
Args:
|
59 |
+
prefix (str): Prefix for the filename
|
60 |
+
extension (str): File extension
|
61 |
|
62 |
Returns:
|
63 |
str: Path to the output file
|
64 |
"""
|
65 |
+
timestamp = int(time.time() * 1000)
|
66 |
+
filename = f"{prefix}_{timestamp}.{extension}"
|
67 |
+
output_dir = os.path.join(os.getcwd(), "output")
|
68 |
+
os.makedirs(output_dir, exist_ok=True)
|
69 |
+
return os.path.join(output_dir, filename)
|
70 |
|
71 |
|
72 |
+
class DummyTTS(TTSBase):
|
73 |
+
"""Dummy TTS engine that generates sine wave audio
|
74 |
|
75 |
+
This class is used as a fallback when no other TTS engine is available.
|
76 |
"""
|
77 |
|
78 |
+
def generate_speech(self, text: str, voice: str = 'default', speed: float = 1.0) -> str:
|
79 |
+
"""Generate a dummy sine wave audio file
|
|
|
|
|
|
|
|
|
80 |
|
81 |
Args:
|
82 |
text (str): Input text (not used)
|
83 |
voice (str): Voice ID (not used)
|
84 |
+
speed (float): Speech speed multiplier (not used)
|
85 |
|
86 |
Returns:
|
87 |
+
str: Path to the generated audio file
|
88 |
"""
|
89 |
logger.info(f"Generating dummy speech for text length: {len(text)}")
|
90 |
|
|
|
|
|
|
|
91 |
# Generate a simple sine wave
|
92 |
sample_rate = 24000
|
93 |
+
duration = min(len(text) / 20, 10) # Rough approximation of speech duration
|
94 |
+
t = np.linspace(0, duration, int(sample_rate * duration), endpoint=False)
|
95 |
+
audio = 0.5 * np.sin(2 * np.pi * 440 * t) # 440 Hz sine wave
|
96 |
|
97 |
+
# Save to file
|
98 |
+
output_path = self._generate_output_path(prefix="dummy")
|
99 |
+
sf.write(output_path, audio, sample_rate)
|
|
|
100 |
|
101 |
+
logger.info(f"Generated dummy audio: {output_path}")
|
102 |
return output_path
|
103 |
|
104 |
+
def generate_speech_stream(self, text: str, voice: str = 'default', speed: float = 1.0) -> Generator[Tuple[int, np.ndarray], None, None]:
|
105 |
+
"""Generate a dummy sine wave audio stream
|
106 |
|
107 |
Args:
|
108 |
text (str): Input text (not used)
|
109 |
voice (str): Voice ID (not used)
|
110 |
+
speed (float): Speech speed multiplier (not used)
|
111 |
|
112 |
Yields:
|
113 |
+
tuple: (sample_rate, audio_data) pairs
|
114 |
"""
|
115 |
logger.info(f"Generating dummy speech stream for text length: {len(text)}")
|
116 |
|
117 |
+
# Generate a simple sine wave
|
118 |
sample_rate = 24000
|
119 |
+
duration = min(len(text) / 20, 10) # Rough approximation of speech duration
|
120 |
+
t = np.linspace(0, duration, int(sample_rate * duration), endpoint=False)
|
121 |
+
audio = 0.5 * np.sin(2 * np.pi * 440 * t) # 440 Hz sine wave
|
122 |
|
123 |
+
# Yield the audio data
|
124 |
+
yield sample_rate, audio
|
|
|
|
|
|
|
|
utils/tts_cascading.py
DELETED
@@ -1,112 +0,0 @@
|
|
1 |
-
import logging
|
2 |
-
from typing import List, Tuple, Generator, Optional
|
3 |
-
import numpy as np
|
4 |
-
|
5 |
-
from utils.tts_base import TTSEngineBase, DummyTTSEngine
|
6 |
-
from utils.tts_engines import create_engine
|
7 |
-
|
8 |
-
# Configure logging
|
9 |
-
logger = logging.getLogger(__name__)
|
10 |
-
|
11 |
-
class CascadingTTSEngine(TTSEngineBase):
|
12 |
-
"""Cascading TTS engine implementation
|
13 |
-
|
14 |
-
This engine tries multiple TTS engines in order until one succeeds.
|
15 |
-
It provides a fallback mechanism to maximize the chances of getting
|
16 |
-
quality speech output.
|
17 |
-
"""
|
18 |
-
|
19 |
-
def __init__(self, engine_types: List[str], lang_code: str = 'z'):
|
20 |
-
"""Initialize the cascading TTS engine
|
21 |
-
|
22 |
-
Args:
|
23 |
-
engine_types (List[str]): List of engine types to try in order
|
24 |
-
lang_code (str): Language code for the engines
|
25 |
-
"""
|
26 |
-
super().__init__(lang_code)
|
27 |
-
self.engine_types = engine_types
|
28 |
-
self.lang_code = lang_code
|
29 |
-
logger.info(f"Initialized cascading TTS engine with engines: {engine_types}")
|
30 |
-
|
31 |
-
def generate_speech(self, text: str, voice: str = 'af_heart', speed: float = 1.0) -> str:
|
32 |
-
"""Generate speech by trying multiple engines in order
|
33 |
-
|
34 |
-
Args:
|
35 |
-
text (str): Input text to synthesize
|
36 |
-
voice (str): Voice ID to use
|
37 |
-
speed (float): Speech speed multiplier
|
38 |
-
|
39 |
-
Returns:
|
40 |
-
str: Path to the generated audio file
|
41 |
-
"""
|
42 |
-
logger.info(f"Generating speech with cascading engine for text length: {len(text)}")
|
43 |
-
|
44 |
-
# Try each engine in order
|
45 |
-
for engine_type in self.engine_types:
|
46 |
-
try:
|
47 |
-
logger.info(f"Trying TTS engine: {engine_type}")
|
48 |
-
engine = create_engine(engine_type, self.lang_code)
|
49 |
-
|
50 |
-
# Generate speech with the current engine
|
51 |
-
result = engine.generate_speech(text, voice, speed)
|
52 |
-
|
53 |
-
# If the engine returned a valid result, return it
|
54 |
-
if result is not None:
|
55 |
-
logger.info(f"Successfully generated speech with {engine_type}")
|
56 |
-
return result
|
57 |
-
|
58 |
-
logger.warning(f"TTS engine {engine_type} failed to generate speech, trying next engine")
|
59 |
-
except Exception as e:
|
60 |
-
logger.error(f"Error with TTS engine {engine_type}: {str(e)}")
|
61 |
-
logger.error(f"Error type: {type(e).__name__}")
|
62 |
-
logger.warning(f"Trying next TTS engine")
|
63 |
-
|
64 |
-
# If all engines failed, fall back to dummy engine
|
65 |
-
logger.warning("All TTS engines failed, falling back to dummy engine")
|
66 |
-
return DummyTTSEngine(self.lang_code).generate_speech(text, voice, speed)
|
67 |
-
|
68 |
-
def generate_speech_stream(self, text: str, voice: str = 'af_heart', speed: float = 1.0) -> Generator[Tuple[int, np.ndarray], None, None]:
|
69 |
-
"""Generate speech stream by trying multiple engines in order
|
70 |
-
|
71 |
-
Args:
|
72 |
-
text (str): Input text to synthesize
|
73 |
-
voice (str): Voice ID to use
|
74 |
-
speed (float): Speech speed multiplier
|
75 |
-
|
76 |
-
Yields:
|
77 |
-
tuple: (sample_rate, audio_data) pairs for each segment
|
78 |
-
"""
|
79 |
-
logger.info(f"Generating speech stream with cascading engine for text length: {len(text)}")
|
80 |
-
|
81 |
-
# Try each engine in order
|
82 |
-
for engine_type in self.engine_types:
|
83 |
-
try:
|
84 |
-
logger.info(f"Trying TTS engine for streaming: {engine_type}")
|
85 |
-
engine = create_engine(engine_type, self.lang_code)
|
86 |
-
|
87 |
-
# Create a generator for the current engine
|
88 |
-
generator = engine.generate_speech_stream(text, voice, speed)
|
89 |
-
|
90 |
-
# Try to get the first chunk to verify the engine works
|
91 |
-
first_chunk = next(generator, None)
|
92 |
-
if first_chunk is not None:
|
93 |
-
# Engine produced a valid first chunk, yield it and continue with this engine
|
94 |
-
logger.info(f"Successfully started speech stream with {engine_type}")
|
95 |
-
yield first_chunk
|
96 |
-
|
97 |
-
# Yield the rest of the chunks from this engine
|
98 |
-
for chunk in generator:
|
99 |
-
yield chunk
|
100 |
-
|
101 |
-
# Successfully streamed all chunks, return
|
102 |
-
return
|
103 |
-
|
104 |
-
logger.warning(f"TTS engine {engine_type} failed to generate speech stream, trying next engine")
|
105 |
-
except Exception as e:
|
106 |
-
logger.error(f"Error with TTS engine {engine_type} streaming: {str(e)}")
|
107 |
-
logger.error(f"Error type: {type(e).__name__}")
|
108 |
-
logger.warning(f"Trying next TTS engine for streaming")
|
109 |
-
|
110 |
-
# If all engines failed, fall back to dummy engine
|
111 |
-
logger.warning("All TTS engines failed for streaming, falling back to dummy engine")
|
112 |
-
yield from DummyTTSEngine(self.lang_code).generate_speech_stream(text, voice, speed)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
utils/tts_cosyvoice2.py
ADDED
@@ -0,0 +1,194 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import numpy as np
|
3 |
+
import soundfile as sf
|
4 |
+
from typing import Optional, Generator, Tuple
|
5 |
+
|
6 |
+
from utils.tts_simplified import TTSBase, DummyTTS
|
7 |
+
|
8 |
+
# Configure logging
|
9 |
+
logger = logging.getLogger(__name__)
|
10 |
+
|
11 |
+
# Flag to track CosyVoice2 availability
|
12 |
+
COSYVOICE2_AVAILABLE = False
|
13 |
+
DEFAULT_SAMPLE_RATE = 24000
|
14 |
+
|
15 |
+
# Try to import CosyVoice2 dependencies
|
16 |
+
try:
|
17 |
+
import torch
|
18 |
+
# Import CosyVoice2 - assuming it's installed and has a similar API to Dia
|
19 |
+
# since they're both from nari-labs according to the GitHub link
|
20 |
+
from cosyvoice2.model import CosyVoice2
|
21 |
+
COSYVOICE2_AVAILABLE = True
|
22 |
+
logger.info("CosyVoice2 TTS engine is available")
|
23 |
+
except ImportError:
|
24 |
+
logger.warning("CosyVoice2 TTS engine is not available")
|
25 |
+
except ModuleNotFoundError as e:
|
26 |
+
logger.warning(f"CosyVoice2 TTS engine is not available: {str(e)}")
|
27 |
+
COSYVOICE2_AVAILABLE = False
|
28 |
+
|
29 |
+
|
30 |
+
def _get_model():
|
31 |
+
"""Lazy-load the CosyVoice2 model
|
32 |
+
|
33 |
+
Returns:
|
34 |
+
CosyVoice2 or None: The CosyVoice2 model or None if not available
|
35 |
+
"""
|
36 |
+
if not COSYVOICE2_AVAILABLE:
|
37 |
+
logger.warning("CosyVoice2 TTS engine is not available")
|
38 |
+
return None
|
39 |
+
|
40 |
+
try:
|
41 |
+
import torch
|
42 |
+
from cosyvoice2.model import CosyVoice2
|
43 |
+
|
44 |
+
# Initialize the model
|
45 |
+
model = CosyVoice2.from_pretrained()
|
46 |
+
logger.info("CosyVoice2 model successfully loaded")
|
47 |
+
return model
|
48 |
+
except ImportError as e:
|
49 |
+
logger.error(f"Failed to import CosyVoice2 dependencies: {str(e)}")
|
50 |
+
return None
|
51 |
+
except FileNotFoundError as e:
|
52 |
+
logger.error(f"Failed to load CosyVoice2 model files: {str(e)}")
|
53 |
+
return None
|
54 |
+
except Exception as e:
|
55 |
+
logger.error(f"Failed to initialize CosyVoice2 model: {str(e)}")
|
56 |
+
return None
|
57 |
+
|
58 |
+
|
59 |
+
class CosyVoice2TTS(TTSBase):
|
60 |
+
"""CosyVoice2 TTS engine implementation
|
61 |
+
|
62 |
+
This engine uses the CosyVoice2 model for TTS generation.
|
63 |
+
"""
|
64 |
+
|
65 |
+
def __init__(self, lang_code: str = 'z'):
|
66 |
+
"""Initialize the CosyVoice2 TTS engine
|
67 |
+
|
68 |
+
Args:
|
69 |
+
lang_code (str): Language code for the engine
|
70 |
+
"""
|
71 |
+
super().__init__(lang_code)
|
72 |
+
self.model = None
|
73 |
+
|
74 |
+
def _ensure_model(self):
|
75 |
+
"""Ensure the model is loaded
|
76 |
+
|
77 |
+
Returns:
|
78 |
+
bool: True if model is available, False otherwise
|
79 |
+
"""
|
80 |
+
if self.model is None:
|
81 |
+
self.model = _get_model()
|
82 |
+
|
83 |
+
return self.model is not None
|
84 |
+
|
85 |
+
def generate_speech(self, text: str, voice: str = 'default', speed: float = 1.0) -> Optional[str]:
|
86 |
+
"""Generate speech using CosyVoice2 TTS engine
|
87 |
+
|
88 |
+
Args:
|
89 |
+
text (str): Input text to synthesize
|
90 |
+
voice (str): Voice ID (may not be used in CosyVoice2)
|
91 |
+
speed (float): Speech speed multiplier (may not be used in CosyVoice2)
|
92 |
+
|
93 |
+
Returns:
|
94 |
+
Optional[str]: Path to the generated audio file or None if generation fails
|
95 |
+
"""
|
96 |
+
logger.info(f"Generating speech with CosyVoice2 for text length: {len(text)}")
|
97 |
+
|
98 |
+
# Check if CosyVoice2 is available
|
99 |
+
if not COSYVOICE2_AVAILABLE:
|
100 |
+
logger.warning("CosyVoice2 TTS engine is not available, falling back to dummy TTS")
|
101 |
+
return DummyTTS(self.lang_code).generate_speech(text, voice, speed)
|
102 |
+
|
103 |
+
# Ensure model is loaded
|
104 |
+
if not self._ensure_model():
|
105 |
+
logger.warning("Failed to load CosyVoice2 model, falling back to dummy TTS")
|
106 |
+
return DummyTTS(self.lang_code).generate_speech(text, voice, speed)
|
107 |
+
|
108 |
+
try:
|
109 |
+
import torch
|
110 |
+
|
111 |
+
# Generate unique output path
|
112 |
+
output_path = self._generate_output_path(prefix="cosyvoice2")
|
113 |
+
|
114 |
+
# Generate audio
|
115 |
+
with torch.inference_mode():
|
116 |
+
# Assuming CosyVoice2 has a similar API to Dia
|
117 |
+
output_audio_np = self.model.generate(
|
118 |
+
text,
|
119 |
+
max_tokens=None,
|
120 |
+
cfg_scale=3.0,
|
121 |
+
temperature=1.3,
|
122 |
+
top_p=0.95,
|
123 |
+
use_torch_compile=False,
|
124 |
+
verbose=False
|
125 |
+
)
|
126 |
+
|
127 |
+
if output_audio_np is not None:
|
128 |
+
logger.info(f"Successfully generated audio with CosyVoice2 (length: {len(output_audio_np)})")
|
129 |
+
sf.write(output_path, output_audio_np, DEFAULT_SAMPLE_RATE)
|
130 |
+
logger.info(f"CosyVoice2 audio generation complete: {output_path}")
|
131 |
+
return output_path
|
132 |
+
else:
|
133 |
+
logger.warning("CosyVoice2 model returned None for audio output")
|
134 |
+
logger.warning("Falling back to dummy TTS")
|
135 |
+
return DummyTTS(self.lang_code).generate_speech(text, voice, speed)
|
136 |
+
|
137 |
+
except Exception as e:
|
138 |
+
logger.error(f"Error generating speech with CosyVoice2: {str(e)}", exc_info=True)
|
139 |
+
logger.warning("CosyVoice2 TTS engine failed, falling back to dummy TTS")
|
140 |
+
return DummyTTS(self.lang_code).generate_speech(text, voice, speed)
|
141 |
+
|
142 |
+
def generate_speech_stream(self, text: str, voice: str = 'default', speed: float = 1.0) -> Generator[Tuple[int, np.ndarray], None, None]:
|
143 |
+
"""Generate speech stream using CosyVoice2 TTS engine
|
144 |
+
|
145 |
+
Args:
|
146 |
+
text (str): Input text to synthesize
|
147 |
+
voice (str): Voice ID (may not be used in CosyVoice2)
|
148 |
+
speed (float): Speech speed multiplier (may not be used in CosyVoice2)
|
149 |
+
|
150 |
+
Yields:
|
151 |
+
tuple: (sample_rate, audio_data) pairs for each segment
|
152 |
+
"""
|
153 |
+
logger.info(f"Generating speech stream with CosyVoice2 for text length: {len(text)}")
|
154 |
+
|
155 |
+
# Check if CosyVoice2 is available
|
156 |
+
if not COSYVOICE2_AVAILABLE:
|
157 |
+
logger.warning("CosyVoice2 TTS engine is not available, falling back to dummy TTS")
|
158 |
+
yield from DummyTTS(self.lang_code).generate_speech_stream(text, voice, speed)
|
159 |
+
return
|
160 |
+
|
161 |
+
# Ensure model is loaded
|
162 |
+
if not self._ensure_model():
|
163 |
+
logger.warning("Failed to load CosyVoice2 model, falling back to dummy TTS")
|
164 |
+
yield from DummyTTS(self.lang_code).generate_speech_stream(text, voice, speed)
|
165 |
+
return
|
166 |
+
|
167 |
+
try:
|
168 |
+
import torch
|
169 |
+
|
170 |
+
# Generate audio
|
171 |
+
with torch.inference_mode():
|
172 |
+
# Assuming CosyVoice2 has a similar API to Dia
|
173 |
+
output_audio_np = self.model.generate(
|
174 |
+
text,
|
175 |
+
max_tokens=None,
|
176 |
+
cfg_scale=3.0,
|
177 |
+
temperature=1.3,
|
178 |
+
top_p=0.95,
|
179 |
+
use_torch_compile=False,
|
180 |
+
verbose=False
|
181 |
+
)
|
182 |
+
|
183 |
+
if output_audio_np is not None:
|
184 |
+
logger.info(f"Successfully generated audio with CosyVoice2 (length: {len(output_audio_np)})")
|
185 |
+
yield DEFAULT_SAMPLE_RATE, output_audio_np
|
186 |
+
else:
|
187 |
+
logger.warning("CosyVoice2 model returned None for audio output")
|
188 |
+
logger.warning("Falling back to dummy TTS")
|
189 |
+
yield from DummyTTS(self.lang_code).generate_speech_stream(text, voice, speed)
|
190 |
+
|
191 |
+
except Exception as e:
|
192 |
+
logger.error(f"Error generating speech stream with CosyVoice2: {str(e)}", exc_info=True)
|
193 |
+
logger.warning("CosyVoice2 TTS engine failed, falling back to dummy TTS")
|
194 |
+
yield from DummyTTS(self.lang_code).generate_speech_stream(text, voice, speed)
|
utils/tts_dia.py
CHANGED
@@ -1,135 +1,207 @@
|
|
1 |
-
import os
|
2 |
-
import time
|
3 |
import logging
|
4 |
import numpy as np
|
5 |
import soundfile as sf
|
6 |
-
from
|
7 |
-
|
|
|
8 |
|
9 |
# Configure logging
|
10 |
-
logging.basicConfig(level=logging.INFO)
|
11 |
logger = logging.getLogger(__name__)
|
12 |
|
13 |
# Flag to track Dia availability
|
14 |
DIA_AVAILABLE = False
|
|
|
15 |
|
16 |
-
# Try to import
|
17 |
try:
|
18 |
import torch
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
DIA_AVAILABLE = True
|
23 |
-
logger.info("Dia TTS engine is available")
|
24 |
-
except ModuleNotFoundError as e:
|
25 |
-
if "dac" in str(e):
|
26 |
-
logger.warning("Dia TTS engine is not available due to missing 'dac' module")
|
27 |
-
else:
|
28 |
-
logger.warning(f"Dia TTS engine is not available: {str(e)}")
|
29 |
-
DIA_AVAILABLE = False
|
30 |
except ImportError:
|
31 |
-
logger.warning("
|
|
|
|
|
|
|
|
|
|
|
32 |
DIA_AVAILABLE = False
|
33 |
|
34 |
-
# Constants
|
35 |
-
DEFAULT_SAMPLE_RATE = 44100
|
36 |
-
DEFAULT_MODEL_NAME = "nari-labs/Dia-1.6B"
|
37 |
-
|
38 |
-
# Global model instance (lazy loaded)
|
39 |
-
_model = None
|
40 |
-
|
41 |
|
42 |
def _get_model():
|
43 |
-
"""Lazy-load the Dia model
|
44 |
-
global _model
|
45 |
|
46 |
-
|
|
|
|
|
47 |
if not DIA_AVAILABLE:
|
48 |
-
logger.warning("Dia is not available
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
-
if _model is None:
|
52 |
-
logger.info("Loading Dia model...")
|
53 |
try:
|
54 |
-
|
55 |
-
logger.info(f"PyTorch version: {torch.__version__}")
|
56 |
-
logger.info(f"CUDA available: {torch.cuda.is_available()}")
|
57 |
-
if torch.cuda.is_available():
|
58 |
-
logger.info(f"CUDA version: {torch.version.cuda}")
|
59 |
-
logger.info(f"GPU device: {torch.cuda.get_device_name(0)}")
|
60 |
|
61 |
-
#
|
62 |
-
|
63 |
|
64 |
-
#
|
65 |
-
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
logger.info(f"Model device: {next(_model.parameters()).device}")
|
74 |
else:
|
75 |
-
logger.
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
|
|
84 |
except Exception as e:
|
85 |
-
logger.error(f"Error
|
86 |
-
logger.
|
87 |
-
|
88 |
-
raise
|
89 |
-
return _model
|
90 |
-
|
91 |
-
|
92 |
-
def generate_speech(text: str, language: str = "zh") -> str:
|
93 |
-
"""Public interface for TTS generation using Dia model
|
94 |
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
Args:
|
99 |
-
text (str): Input text to synthesize
|
100 |
-
language (str): Language code (not used in Dia model, kept for API compatibility)
|
101 |
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
dummy_engine = DummyTTSEngine(language)
|
112 |
-
return dummy_engine.generate_speech(text)
|
113 |
-
|
114 |
-
# Use the new implementation via factory pattern
|
115 |
-
try:
|
116 |
-
# Import here to avoid circular imports
|
117 |
-
from utils.tts_engines import DiaTTSEngine
|
118 |
|
119 |
-
#
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import logging
|
2 |
import numpy as np
|
3 |
import soundfile as sf
|
4 |
+
from typing import Optional, Generator, Tuple
|
5 |
+
|
6 |
+
from utils.tts_simplified import TTSBase, DummyTTS
|
7 |
|
8 |
# Configure logging
|
|
|
9 |
logger = logging.getLogger(__name__)
|
10 |
|
11 |
# Flag to track Dia availability
|
12 |
DIA_AVAILABLE = False
|
13 |
+
DEFAULT_SAMPLE_RATE = 24000
|
14 |
|
15 |
+
# Try to import Dia dependencies
|
16 |
try:
|
17 |
import torch
|
18 |
+
from dia.model import Dia
|
19 |
+
DIA_AVAILABLE = True
|
20 |
+
logger.info("Dia TTS engine is available")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
except ImportError:
|
22 |
+
logger.warning("Dia TTS engine is not available")
|
23 |
+
except ModuleNotFoundError as e:
|
24 |
+
if "dac" in str(e):
|
25 |
+
logger.warning("Dia TTS engine is not available due to missing 'dac' module")
|
26 |
+
else:
|
27 |
+
logger.warning(f"Dia TTS engine is not available: {str(e)}")
|
28 |
DIA_AVAILABLE = False
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
def _get_model():
|
32 |
+
"""Lazy-load the Dia model
|
|
|
33 |
|
34 |
+
Returns:
|
35 |
+
Dia or None: The Dia model or None if not available
|
36 |
+
"""
|
37 |
if not DIA_AVAILABLE:
|
38 |
+
logger.warning("Dia TTS engine is not available")
|
39 |
+
return None
|
40 |
+
|
41 |
+
try:
|
42 |
+
import torch
|
43 |
+
from dia.model import Dia
|
44 |
+
|
45 |
+
# Initialize the model
|
46 |
+
model = Dia.from_pretrained()
|
47 |
+
logger.info("Dia model successfully loaded")
|
48 |
+
return model
|
49 |
+
except ImportError as e:
|
50 |
+
logger.error(f"Failed to import Dia dependencies: {str(e)}")
|
51 |
+
return None
|
52 |
+
except FileNotFoundError as e:
|
53 |
+
logger.error(f"Failed to load Dia model files: {str(e)}")
|
54 |
+
return None
|
55 |
+
except Exception as e:
|
56 |
+
logger.error(f"Failed to initialize Dia model: {str(e)}")
|
57 |
+
return None
|
58 |
+
|
59 |
+
|
60 |
+
class DiaTTS(TTSBase):
|
61 |
+
"""Dia TTS engine implementation
|
62 |
+
|
63 |
+
This engine uses the Dia model for TTS generation.
|
64 |
+
"""
|
65 |
+
|
66 |
+
def __init__(self, lang_code: str = 'z'):
|
67 |
+
"""Initialize the Dia TTS engine
|
68 |
+
|
69 |
+
Args:
|
70 |
+
lang_code (str): Language code for the engine
|
71 |
+
"""
|
72 |
+
super().__init__(lang_code)
|
73 |
+
self.model = None
|
74 |
+
|
75 |
+
def _ensure_model(self):
|
76 |
+
"""Ensure the model is loaded
|
77 |
+
|
78 |
+
Returns:
|
79 |
+
bool: True if model is available, False otherwise
|
80 |
+
"""
|
81 |
+
if self.model is None:
|
82 |
+
self.model = _get_model()
|
83 |
+
|
84 |
+
return self.model is not None
|
85 |
+
|
86 |
+
def generate_speech(self, text: str, voice: str = 'default', speed: float = 1.0) -> Optional[str]:
|
87 |
+
"""Generate speech using Dia TTS engine
|
88 |
+
|
89 |
+
Args:
|
90 |
+
text (str): Input text to synthesize
|
91 |
+
voice (str): Voice ID (not used in Dia)
|
92 |
+
speed (float): Speech speed multiplier (not used in Dia)
|
93 |
+
|
94 |
+
Returns:
|
95 |
+
Optional[str]: Path to the generated audio file or None if generation fails
|
96 |
+
"""
|
97 |
+
logger.info(f"Generating speech with Dia for text length: {len(text)}")
|
98 |
+
|
99 |
+
# Check if Dia is available
|
100 |
+
if not DIA_AVAILABLE:
|
101 |
+
logger.warning("Dia TTS engine is not available, falling back to dummy TTS")
|
102 |
+
return DummyTTS(self.lang_code).generate_speech(text, voice, speed)
|
103 |
+
|
104 |
+
# Ensure model is loaded
|
105 |
+
if not self._ensure_model():
|
106 |
+
logger.warning("Failed to load Dia model, falling back to dummy TTS")
|
107 |
+
return DummyTTS(self.lang_code).generate_speech(text, voice, speed)
|
108 |
|
|
|
|
|
109 |
try:
|
110 |
+
import torch
|
|
|
|
|
|
|
|
|
|
|
111 |
|
112 |
+
# Generate unique output path
|
113 |
+
output_path = self._generate_output_path(prefix="dia")
|
114 |
|
115 |
+
# Generate audio
|
116 |
+
with torch.inference_mode():
|
117 |
+
output_audio_np = self.model.generate(
|
118 |
+
text,
|
119 |
+
max_tokens=None,
|
120 |
+
cfg_scale=3.0,
|
121 |
+
temperature=1.3,
|
122 |
+
top_p=0.95,
|
123 |
+
cfg_filter_top_k=35,
|
124 |
+
use_torch_compile=False,
|
125 |
+
verbose=False
|
126 |
+
)
|
127 |
|
128 |
+
if output_audio_np is not None:
|
129 |
+
logger.info(f"Successfully generated audio with Dia (length: {len(output_audio_np)})")
|
130 |
+
sf.write(output_path, output_audio_np, DEFAULT_SAMPLE_RATE)
|
131 |
+
logger.info(f"Dia audio generation complete: {output_path}")
|
132 |
+
return output_path
|
|
|
133 |
else:
|
134 |
+
logger.warning("Dia model returned None for audio output")
|
135 |
+
logger.warning("Falling back to dummy TTS")
|
136 |
+
return DummyTTS(self.lang_code).generate_speech(text, voice, speed)
|
137 |
+
|
138 |
+
except ModuleNotFoundError as e:
|
139 |
+
if "dac" in str(e):
|
140 |
+
logger.warning("Dia TTS engine failed due to missing 'dac' module, falling back to dummy TTS")
|
141 |
+
else:
|
142 |
+
logger.error(f"Module not found error in Dia TTS: {str(e)}")
|
143 |
+
return DummyTTS(self.lang_code).generate_speech(text, voice, speed)
|
144 |
except Exception as e:
|
145 |
+
logger.error(f"Error generating speech with Dia: {str(e)}", exc_info=True)
|
146 |
+
logger.warning("Dia TTS engine failed, falling back to dummy TTS")
|
147 |
+
return DummyTTS(self.lang_code).generate_speech(text, voice, speed)
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
|
149 |
+
def generate_speech_stream(self, text: str, voice: str = 'default', speed: float = 1.0) -> Generator[Tuple[int, np.ndarray], None, None]:
|
150 |
+
"""Generate speech stream using Dia TTS engine
|
|
|
|
|
|
|
|
|
151 |
|
152 |
+
Args:
|
153 |
+
text (str): Input text to synthesize
|
154 |
+
voice (str): Voice ID (not used in Dia)
|
155 |
+
speed (float): Speech speed multiplier (not used in Dia)
|
156 |
+
|
157 |
+
Yields:
|
158 |
+
tuple: (sample_rate, audio_data) pairs for each segment
|
159 |
+
"""
|
160 |
+
logger.info(f"Generating speech stream with Dia for text length: {len(text)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
|
162 |
+
# Check if Dia is available
|
163 |
+
if not DIA_AVAILABLE:
|
164 |
+
logger.warning("Dia TTS engine is not available, falling back to dummy TTS")
|
165 |
+
yield from DummyTTS(self.lang_code).generate_speech_stream(text, voice, speed)
|
166 |
+
return
|
167 |
+
|
168 |
+
# Ensure model is loaded
|
169 |
+
if not self._ensure_model():
|
170 |
+
logger.warning("Failed to load Dia model, falling back to dummy TTS")
|
171 |
+
yield from DummyTTS(self.lang_code).generate_speech_stream(text, voice, speed)
|
172 |
+
return
|
173 |
+
|
174 |
+
try:
|
175 |
+
import torch
|
176 |
+
|
177 |
+
# Generate audio
|
178 |
+
with torch.inference_mode():
|
179 |
+
output_audio_np = self.model.generate(
|
180 |
+
text,
|
181 |
+
max_tokens=None,
|
182 |
+
cfg_scale=3.0,
|
183 |
+
temperature=1.3,
|
184 |
+
top_p=0.95,
|
185 |
+
cfg_filter_top_k=35,
|
186 |
+
use_torch_compile=False,
|
187 |
+
verbose=False
|
188 |
+
)
|
189 |
+
|
190 |
+
if output_audio_np is not None:
|
191 |
+
logger.info(f"Successfully generated audio with Dia (length: {len(output_audio_np)})")
|
192 |
+
yield DEFAULT_SAMPLE_RATE, output_audio_np
|
193 |
+
else:
|
194 |
+
logger.warning("Dia model returned None for audio output")
|
195 |
+
logger.warning("Falling back to dummy TTS")
|
196 |
+
yield from DummyTTS(self.lang_code).generate_speech_stream(text, voice, speed)
|
197 |
+
|
198 |
+
except ModuleNotFoundError as e:
|
199 |
+
if "dac" in str(e):
|
200 |
+
logger.warning("Dia TTS engine failed due to missing 'dac' module, falling back to dummy TTS")
|
201 |
+
else:
|
202 |
+
logger.error(f"Module not found error in Dia TTS: {str(e)}")
|
203 |
+
yield from DummyTTS(self.lang_code).generate_speech_stream(text, voice, speed)
|
204 |
+
except Exception as e:
|
205 |
+
logger.error(f"Error generating speech stream with Dia: {str(e)}", exc_info=True)
|
206 |
+
logger.warning("Dia TTS engine failed, falling back to dummy TTS")
|
207 |
+
yield from DummyTTS(self.lang_code).generate_speech_stream(text, voice, speed)
|
utils/tts_dia_space.py
DELETED
@@ -1,154 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import time
|
3 |
-
import logging
|
4 |
-
import requests
|
5 |
-
import numpy as np
|
6 |
-
import soundfile as sf
|
7 |
-
from typing import Optional, Tuple, Generator
|
8 |
-
|
9 |
-
# Configure logging
|
10 |
-
logging.basicConfig(level=logging.INFO)
|
11 |
-
logger = logging.getLogger(__name__)
|
12 |
-
|
13 |
-
# Constants
|
14 |
-
DEFAULT_SAMPLE_RATE = 44100
|
15 |
-
DEFAULT_API_URL = "https://droolingpanda-dia-tts-server.hf.space"
|
16 |
-
DEFAULT_MODEL = "dia-1.6b"
|
17 |
-
|
18 |
-
# Global client instance (lazy loaded)
|
19 |
-
_client = None
|
20 |
-
|
21 |
-
|
22 |
-
def _get_client():
|
23 |
-
"""Lazy-load the Dia Space client to avoid loading it until needed"""
|
24 |
-
global _client
|
25 |
-
if _client is None:
|
26 |
-
logger.info("Loading Dia Space client...")
|
27 |
-
try:
|
28 |
-
# Import requests if not already imported
|
29 |
-
import requests
|
30 |
-
|
31 |
-
# Initialize the client (just a session for now)
|
32 |
-
logger.info("Initializing Dia Space client")
|
33 |
-
_client = requests.Session()
|
34 |
-
|
35 |
-
# Test connection to the API
|
36 |
-
response = _client.get(f"{DEFAULT_API_URL}/docs")
|
37 |
-
if response.status_code == 200:
|
38 |
-
logger.info("Dia Space client loaded successfully")
|
39 |
-
logger.info(f"Client type: {type(_client).__name__}")
|
40 |
-
else:
|
41 |
-
logger.warning(f"Dia Space API returned status code {response.status_code}")
|
42 |
-
except ImportError as import_err:
|
43 |
-
logger.error(f"Import error loading Dia Space client: {import_err}")
|
44 |
-
logger.error("This may indicate missing dependencies")
|
45 |
-
raise
|
46 |
-
except Exception as e:
|
47 |
-
logger.error(f"Error loading Dia Space client: {e}", exc_info=True)
|
48 |
-
logger.error(f"Error type: {type(e).__name__}")
|
49 |
-
raise
|
50 |
-
return _client
|
51 |
-
|
52 |
-
|
53 |
-
def generate_speech(text: str, language: str = "zh", voice: str = "S1", response_format: str = "wav", speed: float = 1.0) -> str:
|
54 |
-
"""Public interface for TTS generation using Dia Space API
|
55 |
-
|
56 |
-
This is a legacy function maintained for backward compatibility.
|
57 |
-
New code should use the factory pattern implementation directly.
|
58 |
-
|
59 |
-
Args:
|
60 |
-
text (str): Input text to synthesize
|
61 |
-
language (str): Language code (not used in Dia Space, kept for API compatibility)
|
62 |
-
voice (str): Voice mode to use ('S1', 'S2', 'dialogue', or filename for clone)
|
63 |
-
response_format (str): Audio format ('wav', 'mp3', 'opus')
|
64 |
-
speed (float): Speech speed multiplier
|
65 |
-
|
66 |
-
Returns:
|
67 |
-
str: Path to the generated audio file
|
68 |
-
"""
|
69 |
-
logger.info(f"Legacy Dia Space generate_speech called with text length: {len(text)}")
|
70 |
-
|
71 |
-
# Use the new implementation via factory pattern
|
72 |
-
from utils.tts_engines import DiaSpaceTTSEngine
|
73 |
-
|
74 |
-
try:
|
75 |
-
# Create a Dia Space engine and generate speech
|
76 |
-
dia_space_engine = DiaSpaceTTSEngine(language)
|
77 |
-
return dia_space_engine.generate_speech(text, voice, speed, response_format)
|
78 |
-
except Exception as e:
|
79 |
-
logger.error(f"Error in legacy Dia Space generate_speech: {str(e)}", exc_info=True)
|
80 |
-
# Fall back to dummy TTS
|
81 |
-
from utils.tts_base import DummyTTSEngine
|
82 |
-
dummy_engine = DummyTTSEngine()
|
83 |
-
return dummy_engine.generate_speech(text)
|
84 |
-
|
85 |
-
|
86 |
-
def _create_output_dir() -> str:
|
87 |
-
"""Create output directory for audio files
|
88 |
-
|
89 |
-
Returns:
|
90 |
-
str: Path to the output directory
|
91 |
-
"""
|
92 |
-
output_dir = "temp/outputs"
|
93 |
-
os.makedirs(output_dir, exist_ok=True)
|
94 |
-
return output_dir
|
95 |
-
|
96 |
-
|
97 |
-
def _generate_output_path(prefix: str = "output", extension: str = "wav") -> str:
|
98 |
-
"""Generate a unique output path for audio files
|
99 |
-
|
100 |
-
Args:
|
101 |
-
prefix (str): Prefix for the output filename
|
102 |
-
extension (str): File extension for the output file
|
103 |
-
|
104 |
-
Returns:
|
105 |
-
str: Path to the output file
|
106 |
-
"""
|
107 |
-
output_dir = _create_output_dir()
|
108 |
-
timestamp = int(time.time())
|
109 |
-
return f"{output_dir}/{prefix}_{timestamp}.{extension}"
|
110 |
-
|
111 |
-
|
112 |
-
def _call_dia_api(text: str, voice: str = "S1", response_format: str = "wav", speed: float = 1.0) -> bytes:
|
113 |
-
"""Call the Dia Space API to generate speech
|
114 |
-
|
115 |
-
Args:
|
116 |
-
text (str): Input text to synthesize
|
117 |
-
voice (str): Voice mode to use ('S1', 'S2', 'dialogue', or filename for clone)
|
118 |
-
response_format (str): Audio format ('wav', 'mp3', 'opus')
|
119 |
-
speed (float): Speech speed multiplier
|
120 |
-
|
121 |
-
Returns:
|
122 |
-
bytes: Audio data
|
123 |
-
"""
|
124 |
-
client = _get_client()
|
125 |
-
|
126 |
-
# Prepare the request payload
|
127 |
-
payload = {
|
128 |
-
"model": DEFAULT_MODEL,
|
129 |
-
"input": text,
|
130 |
-
"voice": voice,
|
131 |
-
"response_format": response_format,
|
132 |
-
"speed": speed
|
133 |
-
}
|
134 |
-
|
135 |
-
# Make the API request
|
136 |
-
logger.info(f"Calling Dia Space API with voice: {voice}, format: {response_format}, speed: {speed}")
|
137 |
-
try:
|
138 |
-
response = client.post(
|
139 |
-
f"{DEFAULT_API_URL}/v1/audio/speech",
|
140 |
-
json=payload,
|
141 |
-
headers={"Content-Type": "application/json"}
|
142 |
-
)
|
143 |
-
|
144 |
-
# Check for successful response
|
145 |
-
if response.status_code == 200:
|
146 |
-
logger.info("Dia Space API call successful")
|
147 |
-
return response.content
|
148 |
-
else:
|
149 |
-
logger.error(f"Dia Space API returned error: {response.status_code}")
|
150 |
-
logger.error(f"Response: {response.text}")
|
151 |
-
raise Exception(f"Dia Space API error: {response.status_code}")
|
152 |
-
except Exception as e:
|
153 |
-
logger.error(f"Error calling Dia Space API: {str(e)}", exc_info=True)
|
154 |
-
raise
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
utils/tts_engines.py
DELETED
@@ -1,419 +0,0 @@
|
|
1 |
-
import logging
|
2 |
-
import time
|
3 |
-
import os
|
4 |
-
import numpy as np
|
5 |
-
import soundfile as sf
|
6 |
-
from typing import Dict, List, Optional, Tuple, Generator, Any, Union
|
7 |
-
|
8 |
-
from utils.tts_base import TTSEngineBase, DummyTTSEngine
|
9 |
-
|
10 |
-
# Configure logging
|
11 |
-
logger = logging.getLogger(__name__)
|
12 |
-
|
13 |
-
# Flag to track TTS engine availability
|
14 |
-
KOKORO_AVAILABLE = False
|
15 |
-
KOKORO_SPACE_AVAILABLE = True
|
16 |
-
DIA_AVAILABLE = False
|
17 |
-
DIA_SPACE_AVAILABLE = True
|
18 |
-
|
19 |
-
# Try to import Kokoro
|
20 |
-
try:
|
21 |
-
from kokoro import KPipeline
|
22 |
-
KOKORO_AVAILABLE = True
|
23 |
-
logger.info("Kokoro TTS engine is available")
|
24 |
-
except AttributeError as e:
|
25 |
-
# Specifically catch the EspeakWrapper.set_data_path error
|
26 |
-
if "EspeakWrapper" in str(e) and "set_data_path" in str(e):
|
27 |
-
logger.warning("Kokoro import failed due to EspeakWrapper.set_data_path issue, falling back to Kokoro FastAPI server")
|
28 |
-
else:
|
29 |
-
# Re-raise if it's a different error
|
30 |
-
logger.error(f"Kokoro import failed with unexpected error: {str(e)}")
|
31 |
-
raise
|
32 |
-
except ImportError:
|
33 |
-
logger.warning("Kokoro TTS engine is not available")
|
34 |
-
|
35 |
-
# Try to import Dia dependencies to check availability
|
36 |
-
try:
|
37 |
-
import torch
|
38 |
-
from dia.model import Dia
|
39 |
-
DIA_AVAILABLE = True
|
40 |
-
logger.info("Dia TTS engine is available")
|
41 |
-
except ImportError:
|
42 |
-
logger.warning("Dia TTS engine is not available")
|
43 |
-
except ModuleNotFoundError as e:
|
44 |
-
if "dac" in str(e):
|
45 |
-
logger.warning("Dia TTS engine is not available due to missing 'dac' module")
|
46 |
-
else:
|
47 |
-
logger.warning(f"Dia TTS engine is not available: {str(e)}")
|
48 |
-
DIA_AVAILABLE = False
|
49 |
-
|
50 |
-
|
51 |
-
class KokoroTTSEngine(TTSEngineBase):
|
52 |
-
"""Kokoro TTS engine implementation
|
53 |
-
|
54 |
-
This engine uses the Kokoro library for TTS generation.
|
55 |
-
"""
|
56 |
-
|
57 |
-
def __init__(self, lang_code: str = 'z'):
|
58 |
-
super().__init__(lang_code)
|
59 |
-
try:
|
60 |
-
self.pipeline = KPipeline(lang_code=lang_code)
|
61 |
-
logger.info("Kokoro TTS engine successfully initialized")
|
62 |
-
except Exception as e:
|
63 |
-
logger.error(f"Failed to initialize Kokoro pipeline: {str(e)}")
|
64 |
-
logger.error(f"Error type: {type(e).__name__}")
|
65 |
-
raise
|
66 |
-
|
67 |
-
def generate_speech(self, text: str, voice: str = 'af_heart', speed: float = 1.0) -> Optional[str]:
|
68 |
-
"""Generate speech using Kokoro TTS engine
|
69 |
-
|
70 |
-
Args:
|
71 |
-
text (str): Input text to synthesize
|
72 |
-
voice (str): Voice ID to use (e.g., 'af_heart', 'af_bella', etc.)
|
73 |
-
speed (float): Speech speed multiplier (0.5 to 2.0)
|
74 |
-
|
75 |
-
Returns:
|
76 |
-
Optional[str]: Path to the generated audio file or None if generation fails
|
77 |
-
"""
|
78 |
-
logger.info(f"Generating speech with Kokoro for text length: {len(text)}")
|
79 |
-
|
80 |
-
# Generate unique output path
|
81 |
-
output_path = self._generate_output_path()
|
82 |
-
|
83 |
-
# Generate speech
|
84 |
-
generator = self.pipeline(text, voice=voice, speed=speed)
|
85 |
-
for _, _, audio in generator:
|
86 |
-
logger.info(f"Saving Kokoro audio to {output_path}")
|
87 |
-
sf.write(output_path, audio, 24000)
|
88 |
-
break
|
89 |
-
|
90 |
-
logger.info(f"Kokoro audio generation complete: {output_path}")
|
91 |
-
return output_path
|
92 |
-
|
93 |
-
def generate_speech_stream(self, text: str, voice: str = 'af_heart', speed: float = 1.0) -> Generator[Tuple[int, np.ndarray], None, None]:
|
94 |
-
"""Generate speech stream using Kokoro TTS engine
|
95 |
-
|
96 |
-
Args:
|
97 |
-
text (str): Input text to synthesize
|
98 |
-
voice (str): Voice ID to use
|
99 |
-
speed (float): Speech speed multiplier
|
100 |
-
|
101 |
-
Yields:
|
102 |
-
tuple: (sample_rate, audio_data) pairs for each segment
|
103 |
-
"""
|
104 |
-
logger.info(f"Generating speech stream with Kokoro for text length: {len(text)}")
|
105 |
-
|
106 |
-
# Generate speech stream
|
107 |
-
generator = self.pipeline(text, voice=voice, speed=speed)
|
108 |
-
for _, _, audio in generator:
|
109 |
-
yield 24000, audio
|
110 |
-
|
111 |
-
|
112 |
-
class KokoroSpaceTTSEngine(TTSEngineBase):
|
113 |
-
"""Kokoro Space TTS engine implementation
|
114 |
-
|
115 |
-
This engine uses the Kokoro FastAPI server for TTS generation.
|
116 |
-
"""
|
117 |
-
|
118 |
-
def __init__(self, lang_code: str = 'z'):
|
119 |
-
super().__init__(lang_code)
|
120 |
-
try:
|
121 |
-
from gradio_client import Client
|
122 |
-
self.client = Client("Remsky/Kokoro-TTS-Zero")
|
123 |
-
logger.info("Kokoro Space TTS engine successfully initialized")
|
124 |
-
except Exception as e:
|
125 |
-
logger.error(f"Failed to initialize Kokoro Space client: {str(e)}")
|
126 |
-
logger.error(f"Error type: {type(e).__name__}")
|
127 |
-
raise
|
128 |
-
|
129 |
-
def generate_speech(self, text: str, voice: str = 'af_heart', speed: float = 1.0) -> Optional[str]:
|
130 |
-
"""Generate speech using Kokoro Space TTS engine
|
131 |
-
|
132 |
-
Args:
|
133 |
-
text (str): Input text to synthesize
|
134 |
-
voice (str): Voice ID to use (e.g., 'af_heart', 'af_bella', etc.)
|
135 |
-
speed (float): Speech speed multiplier (0.5 to 2.0)
|
136 |
-
|
137 |
-
Returns:
|
138 |
-
Optional[str]: Path to the generated audio file or None if generation fails
|
139 |
-
"""
|
140 |
-
logger.info(f"Generating speech with Kokoro Space for text length: {len(text)}")
|
141 |
-
logger.info(f"Text to generate speech on is: {text[:50]}..." if len(text) > 50 else f"Text to generate speech on is: {text}")
|
142 |
-
|
143 |
-
# Generate unique output path
|
144 |
-
output_path = self._generate_output_path()
|
145 |
-
|
146 |
-
try:
|
147 |
-
# Use af_nova as the default voice for Kokoro Space
|
148 |
-
voice_to_use = 'af_nova' if voice == 'af_heart' else voice
|
149 |
-
|
150 |
-
# Generate speech
|
151 |
-
result = self.client.predict(
|
152 |
-
text=text,
|
153 |
-
voice_names=voice_to_use,
|
154 |
-
speed=speed,
|
155 |
-
api_name="/generate_speech_from_ui"
|
156 |
-
)
|
157 |
-
logger.info(f"Received audio from Kokoro FastAPI server: {result}")
|
158 |
-
|
159 |
-
# Process the result and save to output_path
|
160 |
-
# Return the result path directly if it's a string
|
161 |
-
if isinstance(result, str) and os.path.exists(result):
|
162 |
-
return result
|
163 |
-
else:
|
164 |
-
logger.warning("Unexpected result from Kokoro Space")
|
165 |
-
return None
|
166 |
-
|
167 |
-
except Exception as e:
|
168 |
-
logger.error(f"Failed to generate speech from Kokoro FastAPI server: {str(e)}")
|
169 |
-
logger.error(f"Error type: {type(e).__name__}")
|
170 |
-
logger.info("Kokoro Space TTS engine failed")
|
171 |
-
return None
|
172 |
-
|
173 |
-
|
174 |
-
class DiaTTSEngine(TTSEngineBase):
|
175 |
-
"""Dia TTS engine implementation
|
176 |
-
|
177 |
-
This engine uses the Dia model for TTS generation.
|
178 |
-
"""
|
179 |
-
|
180 |
-
def __init__(self, lang_code: str = 'z'):
|
181 |
-
super().__init__(lang_code)
|
182 |
-
# Dia doesn't need initialization here, it will be lazy-loaded when needed
|
183 |
-
logger.info("Dia TTS engine initialized (lazy loading)")
|
184 |
-
|
185 |
-
def generate_speech(self, text: str, voice: str = 'af_heart', speed: float = 1.0) -> Optional[str]:
|
186 |
-
"""Generate speech using Dia TTS engine
|
187 |
-
|
188 |
-
Args:
|
189 |
-
text (str): Input text to synthesize
|
190 |
-
voice (str): Voice ID (not used in Dia)
|
191 |
-
speed (float): Speech speed multiplier (not used in Dia)
|
192 |
-
|
193 |
-
Returns:
|
194 |
-
Optional[str]: Path to the generated audio file or None if generation fails
|
195 |
-
"""
|
196 |
-
logger.info(f"Generating speech with Dia for text length: {len(text)}")
|
197 |
-
|
198 |
-
try:
|
199 |
-
# Import here to avoid circular imports
|
200 |
-
from utils.tts_dia import generate_speech as dia_generate_speech, DIA_AVAILABLE
|
201 |
-
|
202 |
-
# Check if Dia is available
|
203 |
-
if not DIA_AVAILABLE:
|
204 |
-
logger.warning("Dia TTS engine is not available")
|
205 |
-
return None
|
206 |
-
|
207 |
-
logger.info("Successfully imported Dia speech generation function")
|
208 |
-
|
209 |
-
# Call Dia's generate_speech function
|
210 |
-
# Note: Dia's function expects a language parameter, not voice or speed
|
211 |
-
output_path = dia_generate_speech(text, language=self.lang_code)
|
212 |
-
logger.info(f"Generated audio with Dia: {output_path}")
|
213 |
-
return output_path
|
214 |
-
except ModuleNotFoundError as e:
|
215 |
-
if "dac" in str(e):
|
216 |
-
logger.warning("Dia TTS engine failed due to missing 'dac' module")
|
217 |
-
return None
|
218 |
-
raise
|
219 |
-
except Exception as e:
|
220 |
-
logger.error(f"Error generating speech with Dia: {str(e)}", exc_info=True)
|
221 |
-
logger.warning("Dia TTS engine failed")
|
222 |
-
return None
|
223 |
-
|
224 |
-
|
225 |
-
class DiaSpaceTTSEngine(TTSEngineBase):
|
226 |
-
"""Dia Space TTS engine implementation
|
227 |
-
|
228 |
-
This engine uses the Dia TTS Server API for speech generation.
|
229 |
-
"""
|
230 |
-
|
231 |
-
def __init__(self, lang_code: str = 'z'):
|
232 |
-
super().__init__(lang_code)
|
233 |
-
try:
|
234 |
-
# Import here to avoid circular imports
|
235 |
-
from utils.tts_dia_space import _get_client
|
236 |
-
self.client = _get_client()
|
237 |
-
logger.info("Dia Space TTS engine successfully initialized")
|
238 |
-
except Exception as e:
|
239 |
-
logger.error(f"Failed to initialize Dia Space client: {str(e)}")
|
240 |
-
logger.error(f"Error type: {type(e).__name__}")
|
241 |
-
raise
|
242 |
-
|
243 |
-
def generate_speech(self, text: str, voice: str = 'S1', speed: float = 1.0, response_format: str = 'wav') -> Optional[str]:
|
244 |
-
"""Generate speech using Dia Space TTS engine
|
245 |
-
|
246 |
-
Args:
|
247 |
-
text (str): Input text to synthesize
|
248 |
-
voice (str): Voice mode to use ('S1', 'S2', 'dialogue', or filename for clone)
|
249 |
-
speed (float): Speech speed multiplier
|
250 |
-
response_format (str): Audio format ('wav', 'mp3', 'opus')
|
251 |
-
|
252 |
-
Returns:
|
253 |
-
Optional[str]: Path to the generated audio file or None if generation fails
|
254 |
-
"""
|
255 |
-
logger.info(f"Generating speech with Dia Space for text length: {len(text)}")
|
256 |
-
|
257 |
-
try:
|
258 |
-
# Import here to avoid circular imports
|
259 |
-
from utils.tts_dia_space import _call_dia_api, _generate_output_path
|
260 |
-
|
261 |
-
# Call the Dia Space API
|
262 |
-
audio_data = _call_dia_api(text, voice, response_format, speed)
|
263 |
-
|
264 |
-
# Save the audio data to a file
|
265 |
-
output_path = _generate_output_path(prefix="dia_space", extension=response_format)
|
266 |
-
with open(output_path, 'wb') as f:
|
267 |
-
f.write(audio_data)
|
268 |
-
|
269 |
-
logger.info(f"Generated audio with Dia Space: {output_path}")
|
270 |
-
return output_path
|
271 |
-
except Exception as e:
|
272 |
-
logger.error(f"Failed to generate speech from Dia Space API: {str(e)}")
|
273 |
-
logger.error(f"Error type: {type(e).__name__}")
|
274 |
-
logger.info("Dia Space TTS engine failed")
|
275 |
-
return None
|
276 |
-
|
277 |
-
except ImportError as import_err:
|
278 |
-
logger.error(f"Dia TTS generation failed due to import error: {str(import_err)}")
|
279 |
-
logger.error("Dia Space TTS engine failed")
|
280 |
-
return None
|
281 |
-
|
282 |
-
except Exception as dia_error:
|
283 |
-
logger.error(f"Dia TTS generation failed: {str(dia_error)}", exc_info=True)
|
284 |
-
logger.error(f"Error type: {type(dia_error).__name__}")
|
285 |
-
logger.error("Dia Space TTS engine failed")
|
286 |
-
return None
|
287 |
-
|
288 |
-
def generate_speech_stream(self, text: str, voice: str = 'af_heart', speed: float = 1.0) -> Generator[Tuple[int, np.ndarray], None, None]:
|
289 |
-
"""Generate speech stream using Dia TTS engine
|
290 |
-
|
291 |
-
Args:
|
292 |
-
text (str): Input text to synthesize
|
293 |
-
voice (str): Voice ID (not used in Dia)
|
294 |
-
speed (float): Speech speed multiplier (not used in Dia)
|
295 |
-
|
296 |
-
Yields:
|
297 |
-
tuple: (sample_rate, audio_data) pairs for each segment
|
298 |
-
"""
|
299 |
-
logger.info(f"Generating speech stream with Dia for text length: {len(text)}")
|
300 |
-
|
301 |
-
try:
|
302 |
-
# Import required modules
|
303 |
-
from utils.tts_dia import _get_model, DEFAULT_SAMPLE_RATE, DIA_AVAILABLE
|
304 |
-
|
305 |
-
# Check if Dia is available
|
306 |
-
if not DIA_AVAILABLE:
|
307 |
-
logger.warning("Dia TTS engine is not available, falling back to dummy audio stream")
|
308 |
-
yield from DummyTTSEngine(self.lang_code).generate_speech_stream(text, voice, speed)
|
309 |
-
return
|
310 |
-
|
311 |
-
import torch
|
312 |
-
|
313 |
-
# Get the Dia model
|
314 |
-
model = _get_model()
|
315 |
-
|
316 |
-
# Generate audio
|
317 |
-
with torch.inference_mode():
|
318 |
-
output_audio_np = model.generate(
|
319 |
-
text,
|
320 |
-
max_tokens=None,
|
321 |
-
cfg_scale=3.0,
|
322 |
-
temperature=1.3,
|
323 |
-
top_p=0.95,
|
324 |
-
cfg_filter_top_k=35,
|
325 |
-
use_torch_compile=False,
|
326 |
-
verbose=False
|
327 |
-
)
|
328 |
-
|
329 |
-
if output_audio_np is not None:
|
330 |
-
logger.info(f"Successfully generated audio with Dia (length: {len(output_audio_np)})")
|
331 |
-
yield DEFAULT_SAMPLE_RATE, output_audio_np
|
332 |
-
else:
|
333 |
-
logger.warning("Dia model returned None for audio output")
|
334 |
-
logger.warning("Falling back to dummy audio stream")
|
335 |
-
yield from DummyTTSEngine(self.lang_code).generate_speech_stream(text, voice, speed)
|
336 |
-
|
337 |
-
except ModuleNotFoundError as e:
|
338 |
-
if "dac" in str(e):
|
339 |
-
logger.warning("Dia TTS streaming failed due to missing 'dac' module, falling back to dummy audio stream")
|
340 |
-
else:
|
341 |
-
logger.error(f"Module not found error in Dia TTS streaming: {str(e)}")
|
342 |
-
yield from DummyTTSEngine(self.lang_code).generate_speech_stream(text, voice, speed)
|
343 |
-
|
344 |
-
except ImportError as import_err:
|
345 |
-
logger.error(f"Dia TTS streaming failed due to import error: {str(import_err)}")
|
346 |
-
logger.error("Falling back to dummy audio stream")
|
347 |
-
yield from DummyTTSEngine(self.lang_code).generate_speech_stream(text, voice, speed)
|
348 |
-
|
349 |
-
except Exception as dia_error:
|
350 |
-
logger.error(f"Dia TTS streaming failed: {str(dia_error)}", exc_info=True)
|
351 |
-
logger.error(f"Error type: {type(dia_error).__name__}")
|
352 |
-
logger.error("Falling back to dummy audio stream")
|
353 |
-
yield from DummyTTSEngine(self.lang_code).generate_speech_stream(text, voice, speed)
|
354 |
-
|
355 |
-
|
356 |
-
def get_available_engines() -> List[str]:
|
357 |
-
"""Get a list of available TTS engines
|
358 |
-
|
359 |
-
Returns:
|
360 |
-
List[str]: List of available engine names
|
361 |
-
"""
|
362 |
-
available = []
|
363 |
-
|
364 |
-
if KOKORO_AVAILABLE:
|
365 |
-
available.append('kokoro')
|
366 |
-
|
367 |
-
if KOKORO_SPACE_AVAILABLE:
|
368 |
-
available.append('kokoro_space')
|
369 |
-
|
370 |
-
if DIA_AVAILABLE:
|
371 |
-
available.append('dia')
|
372 |
-
|
373 |
-
if DIA_SPACE_AVAILABLE:
|
374 |
-
available.append('dia_space')
|
375 |
-
|
376 |
-
# Dummy is always available
|
377 |
-
available.append('dummy')
|
378 |
-
|
379 |
-
return available
|
380 |
-
|
381 |
-
|
382 |
-
def create_engine(engine_type: str, lang_code: str = 'z') -> TTSEngineBase:
|
383 |
-
"""Create a specific TTS engine
|
384 |
-
|
385 |
-
Args:
|
386 |
-
engine_type (str): Type of engine to create ('kokoro', 'kokoro_space', 'dia', 'dia_space', 'dummy')
|
387 |
-
lang_code (str): Language code for the engine
|
388 |
-
|
389 |
-
Returns:
|
390 |
-
TTSEngineBase: An instance of the requested TTS engine
|
391 |
-
|
392 |
-
Raises:
|
393 |
-
ValueError: If the requested engine type is not supported
|
394 |
-
"""
|
395 |
-
if engine_type == 'kokoro':
|
396 |
-
if not KOKORO_AVAILABLE:
|
397 |
-
raise ValueError("Kokoro TTS engine is not available")
|
398 |
-
return KokoroTTSEngine(lang_code)
|
399 |
-
|
400 |
-
elif engine_type == 'kokoro_space':
|
401 |
-
if not KOKORO_SPACE_AVAILABLE:
|
402 |
-
raise ValueError("Kokoro Space TTS engine is not available")
|
403 |
-
return KokoroSpaceTTSEngine(lang_code)
|
404 |
-
|
405 |
-
elif engine_type == 'dia':
|
406 |
-
if not DIA_AVAILABLE:
|
407 |
-
raise ValueError("Dia TTS engine is not available")
|
408 |
-
return DiaTTSEngine(lang_code)
|
409 |
-
|
410 |
-
elif engine_type == 'dia_space':
|
411 |
-
if not DIA_SPACE_AVAILABLE:
|
412 |
-
raise ValueError("Dia Space TTS engine is not available")
|
413 |
-
return DiaSpaceTTSEngine(lang_code)
|
414 |
-
|
415 |
-
elif engine_type == 'dummy':
|
416 |
-
return DummyTTSEngine(lang_code)
|
417 |
-
|
418 |
-
else:
|
419 |
-
raise ValueError(f"Unsupported TTS engine type: {engine_type}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
utils/tts_factory.py
DELETED
@@ -1,77 +0,0 @@
|
|
1 |
-
import logging
|
2 |
-
from typing import Optional, List
|
3 |
-
|
4 |
-
# Configure logging
|
5 |
-
logger = logging.getLogger(__name__)
|
6 |
-
|
7 |
-
# Import the base class
|
8 |
-
from utils.tts_base import TTSEngineBase, DummyTTSEngine
|
9 |
-
from utils.tts_cascading import CascadingTTSEngine
|
10 |
-
|
11 |
-
class TTSFactory:
|
12 |
-
"""Factory class for creating TTS engines
|
13 |
-
|
14 |
-
This class is responsible for creating the appropriate TTS engine based on
|
15 |
-
availability and configuration.
|
16 |
-
"""
|
17 |
-
|
18 |
-
@staticmethod
|
19 |
-
def create_engine(engine_type: Optional[str] = None, lang_code: str = 'z') -> TTSEngineBase:
|
20 |
-
"""Create a TTS engine instance
|
21 |
-
|
22 |
-
Args:
|
23 |
-
engine_type (str, optional): Type of engine to create ('kokoro', 'kokoro_space', 'dia', 'dummy')
|
24 |
-
If None, the best available engine will be used
|
25 |
-
lang_code (str): Language code for the engine
|
26 |
-
|
27 |
-
Returns:
|
28 |
-
TTSEngineBase: An instance of a TTS engine
|
29 |
-
"""
|
30 |
-
from utils.tts_engines import get_available_engines, create_engine
|
31 |
-
|
32 |
-
# Get available engines
|
33 |
-
available_engines = get_available_engines()
|
34 |
-
logger.info(f"Available TTS engines: {available_engines}")
|
35 |
-
|
36 |
-
# If engine_type is specified, try to create that specific engine
|
37 |
-
if engine_type is not None:
|
38 |
-
if engine_type in available_engines:
|
39 |
-
logger.info(f"Creating requested engine: {engine_type}")
|
40 |
-
engine = create_engine(engine_type, lang_code)
|
41 |
-
return engine
|
42 |
-
else:
|
43 |
-
logger.warning(f"Requested engine '{engine_type}' is not available")
|
44 |
-
|
45 |
-
# Fall back to dummy engine if no engines are available
|
46 |
-
if not available_engines or (len(available_engines) == 1 and available_engines[0] == 'dummy'):
|
47 |
-
logger.warning("No TTS engines available, falling back to dummy engine")
|
48 |
-
return DummyTTSEngine(lang_code)
|
49 |
-
|
50 |
-
return TTSFactory.create_cascading_engine(available_engines, lang_code)
|
51 |
-
|
52 |
-
@staticmethod
|
53 |
-
def create_cascading_engine(available_engines: List[str], lang_code: str = 'z') -> TTSEngineBase:
|
54 |
-
"""Create a cascading TTS engine that tries multiple engines in order
|
55 |
-
|
56 |
-
Args:
|
57 |
-
available_engines (List[str]): List of available engine names
|
58 |
-
lang_code (str): Language code for the engines
|
59 |
-
|
60 |
-
Returns:
|
61 |
-
TTSEngineBase: A cascading TTS engine instance
|
62 |
-
"""
|
63 |
-
from utils.tts_engines import create_engine
|
64 |
-
|
65 |
-
# Define the priority order for engines
|
66 |
-
priority_order = ['kokoro', 'kokoro_space', 'dia', 'dia_space', 'dummy']
|
67 |
-
|
68 |
-
# Filter and sort available engines by priority
|
69 |
-
engines_by_priority = [engine for engine in priority_order if engine in available_engines]
|
70 |
-
|
71 |
-
# Always ensure dummy is the last fallback
|
72 |
-
if 'dummy' not in engines_by_priority:
|
73 |
-
engines_by_priority.append('dummy')
|
74 |
-
|
75 |
-
logger.info(f"Creating cascading engine with priority: {engines_by_priority}")
|
76 |
-
|
77 |
-
return CascadingTTSEngine(engines_by_priority, lang_code)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
utils/tts_kokoro.py
CHANGED
@@ -1,106 +1,148 @@
|
|
1 |
-
import os
|
2 |
-
import time
|
3 |
import logging
|
4 |
import numpy as np
|
5 |
import soundfile as sf
|
6 |
-
from typing import Optional,
|
|
|
|
|
7 |
|
8 |
# Configure logging
|
9 |
-
logging.basicConfig(level=logging.INFO)
|
10 |
logger = logging.getLogger(__name__)
|
11 |
|
12 |
-
#
|
13 |
-
|
14 |
|
15 |
-
#
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
|
19 |
def _get_pipeline(lang_code: str = 'z'):
|
20 |
-
"""Lazy-load the Kokoro pipeline
|
21 |
-
global _pipeline
|
22 |
-
if _pipeline is None:
|
23 |
-
logger.info("Loading Kokoro pipeline...")
|
24 |
-
try:
|
25 |
-
# Import Kokoro
|
26 |
-
from kokoro import KPipeline
|
27 |
-
|
28 |
-
# Initialize the pipeline
|
29 |
-
logger.info(f"Initializing Kokoro pipeline with language code: {lang_code}")
|
30 |
-
_pipeline = KPipeline(lang_code=lang_code)
|
31 |
-
|
32 |
-
# Log pipeline details
|
33 |
-
logger.info(f"Kokoro pipeline loaded successfully")
|
34 |
-
logger.info(f"Pipeline type: {type(_pipeline).__name__}")
|
35 |
-
except ImportError as import_err:
|
36 |
-
logger.error(f"Import error loading Kokoro pipeline: {import_err}")
|
37 |
-
logger.error(f"This may indicate missing dependencies")
|
38 |
-
raise
|
39 |
-
except Exception as e:
|
40 |
-
logger.error(f"Error loading Kokoro pipeline: {e}", exc_info=True)
|
41 |
-
logger.error(f"Error type: {type(e).__name__}")
|
42 |
-
raise
|
43 |
-
return _pipeline
|
44 |
-
|
45 |
-
|
46 |
-
def generate_speech(text: str, language: str = "z", voice: str = "af_heart", speed: float = 1.0) -> str:
|
47 |
-
"""Public interface for TTS generation using Kokoro model
|
48 |
-
|
49 |
-
This is a legacy function maintained for backward compatibility.
|
50 |
-
New code should use the factory pattern implementation directly.
|
51 |
|
52 |
Args:
|
53 |
-
|
54 |
-
language (str): Language code ('a' for US English, 'b' for British English,
|
55 |
-
'j' for Japanese, 'z' for Mandarin Chinese)
|
56 |
-
voice (str): Voice ID to use (e.g., 'af_heart', 'af_bella', etc.)
|
57 |
-
speed (float): Speech speed multiplier (0.5 to 2.0)
|
58 |
|
59 |
Returns:
|
60 |
-
|
61 |
"""
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
from utils.tts_engines import KokoroTTSEngine
|
66 |
|
67 |
try:
|
68 |
-
|
69 |
-
|
70 |
-
return
|
71 |
except Exception as e:
|
72 |
-
logger.error(f"
|
73 |
-
|
74 |
-
from utils.tts_base import DummyTTSEngine
|
75 |
-
dummy_engine = DummyTTSEngine()
|
76 |
-
return dummy_engine.generate_speech(text)
|
77 |
|
78 |
|
79 |
-
|
80 |
-
"""
|
81 |
|
82 |
-
|
83 |
-
text (str): Input text to synthesize
|
84 |
-
language (str): Language code
|
85 |
-
voice (str): Voice ID to use
|
86 |
-
speed (float): Speech speed multiplier
|
87 |
-
|
88 |
-
Yields:
|
89 |
-
tuple: (sample_rate, audio_data) pairs for each segment
|
90 |
"""
|
91 |
-
logger.info(f"Generating speech stream with Kokoro for text length: {len(text)}")
|
92 |
|
93 |
-
|
94 |
-
|
95 |
-
pipeline = _get_pipeline(language)
|
96 |
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import logging
|
2 |
import numpy as np
|
3 |
import soundfile as sf
|
4 |
+
from typing import Optional, Generator, Tuple
|
5 |
+
|
6 |
+
from utils.tts_simplified import TTSBase, DummyTTS
|
7 |
|
8 |
# Configure logging
|
|
|
9 |
logger = logging.getLogger(__name__)
|
10 |
|
11 |
+
# Flag to track Kokoro availability
|
12 |
+
KOKORO_AVAILABLE = False
|
13 |
|
14 |
+
# Try to import Kokoro
|
15 |
+
try:
|
16 |
+
from kokoro import KPipeline
|
17 |
+
KOKORO_AVAILABLE = True
|
18 |
+
logger.info("Kokoro TTS engine is available")
|
19 |
+
except ImportError:
|
20 |
+
logger.warning("Kokoro TTS engine is not available")
|
21 |
+
except Exception as e:
|
22 |
+
logger.error(f"Kokoro import failed with unexpected error: {str(e)}")
|
23 |
+
KOKORO_AVAILABLE = False
|
24 |
|
25 |
|
26 |
def _get_pipeline(lang_code: str = 'z'):
|
27 |
+
"""Lazy-load the Kokoro pipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
Args:
|
30 |
+
lang_code (str): Language code for the pipeline
|
|
|
|
|
|
|
|
|
31 |
|
32 |
Returns:
|
33 |
+
KPipeline or None: The Kokoro pipeline or None if not available
|
34 |
"""
|
35 |
+
if not KOKORO_AVAILABLE:
|
36 |
+
logger.warning("Kokoro TTS engine is not available")
|
37 |
+
return None
|
|
|
38 |
|
39 |
try:
|
40 |
+
pipeline = KPipeline(lang_code=lang_code)
|
41 |
+
logger.info("Kokoro pipeline successfully loaded")
|
42 |
+
return pipeline
|
43 |
except Exception as e:
|
44 |
+
logger.error(f"Failed to initialize Kokoro pipeline: {str(e)}")
|
45 |
+
return None
|
|
|
|
|
|
|
46 |
|
47 |
|
48 |
+
class KokoroTTS(TTSBase):
|
49 |
+
"""Kokoro TTS engine implementation
|
50 |
|
51 |
+
This engine uses the Kokoro library for TTS generation.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
"""
|
|
|
53 |
|
54 |
+
def __init__(self, lang_code: str = 'z'):
|
55 |
+
"""Initialize the Kokoro TTS engine
|
|
|
56 |
|
57 |
+
Args:
|
58 |
+
lang_code (str): Language code for the engine
|
59 |
+
"""
|
60 |
+
super().__init__(lang_code)
|
61 |
+
self.pipeline = None
|
62 |
+
|
63 |
+
def _ensure_pipeline(self):
|
64 |
+
"""Ensure the pipeline is loaded
|
65 |
+
|
66 |
+
Returns:
|
67 |
+
bool: True if pipeline is available, False otherwise
|
68 |
+
"""
|
69 |
+
if self.pipeline is None:
|
70 |
+
self.pipeline = _get_pipeline(self.lang_code)
|
71 |
+
|
72 |
+
return self.pipeline is not None
|
73 |
+
|
74 |
+
def generate_speech(self, text: str, voice: str = 'af_heart', speed: float = 1.0) -> Optional[str]:
|
75 |
+
"""Generate speech using Kokoro TTS engine
|
76 |
+
|
77 |
+
Args:
|
78 |
+
text (str): Input text to synthesize
|
79 |
+
voice (str): Voice ID to use (e.g., 'af_heart', 'af_bella', etc.)
|
80 |
+
speed (float): Speech speed multiplier (0.5 to 2.0)
|
81 |
+
|
82 |
+
Returns:
|
83 |
+
Optional[str]: Path to the generated audio file or None if generation fails
|
84 |
+
"""
|
85 |
+
logger.info(f"Generating speech with Kokoro for text length: {len(text)}")
|
86 |
+
|
87 |
+
# Check if Kokoro is available
|
88 |
+
if not KOKORO_AVAILABLE:
|
89 |
+
logger.warning("Kokoro TTS engine is not available, falling back to dummy TTS")
|
90 |
+
return DummyTTS(self.lang_code).generate_speech(text, voice, speed)
|
91 |
+
|
92 |
+
# Ensure pipeline is loaded
|
93 |
+
if not self._ensure_pipeline():
|
94 |
+
logger.warning("Failed to load Kokoro pipeline, falling back to dummy TTS")
|
95 |
+
return DummyTTS(self.lang_code).generate_speech(text, voice, speed)
|
96 |
+
|
97 |
+
try:
|
98 |
+
# Generate unique output path
|
99 |
+
output_path = self._generate_output_path(prefix="kokoro")
|
100 |
+
|
101 |
+
# Generate speech
|
102 |
+
generator = self.pipeline(text, voice=voice, speed=speed)
|
103 |
+
for _, _, audio in generator:
|
104 |
+
logger.info(f"Saving Kokoro audio to {output_path}")
|
105 |
+
sf.write(output_path, audio, 24000)
|
106 |
+
break
|
107 |
+
|
108 |
+
logger.info(f"Kokoro audio generation complete: {output_path}")
|
109 |
+
return output_path
|
110 |
+
except Exception as e:
|
111 |
+
logger.error(f"Error generating speech with Kokoro: {str(e)}", exc_info=True)
|
112 |
+
logger.warning("Kokoro TTS engine failed, falling back to dummy TTS")
|
113 |
+
return DummyTTS(self.lang_code).generate_speech(text, voice, speed)
|
114 |
+
|
115 |
+
def generate_speech_stream(self, text: str, voice: str = 'af_heart', speed: float = 1.0) -> Generator[Tuple[int, np.ndarray], None, None]:
|
116 |
+
"""Generate speech stream using Kokoro TTS engine
|
117 |
+
|
118 |
+
Args:
|
119 |
+
text (str): Input text to synthesize
|
120 |
+
voice (str): Voice ID to use
|
121 |
+
speed (float): Speech speed multiplier
|
122 |
+
|
123 |
+
Yields:
|
124 |
+
tuple: (sample_rate, audio_data) pairs for each segment
|
125 |
+
"""
|
126 |
+
logger.info(f"Generating speech stream with Kokoro for text length: {len(text)}")
|
127 |
+
|
128 |
+
# Check if Kokoro is available
|
129 |
+
if not KOKORO_AVAILABLE:
|
130 |
+
logger.warning("Kokoro TTS engine is not available, falling back to dummy TTS")
|
131 |
+
yield from DummyTTS(self.lang_code).generate_speech_stream(text, voice, speed)
|
132 |
+
return
|
133 |
+
|
134 |
+
# Ensure pipeline is loaded
|
135 |
+
if not self._ensure_pipeline():
|
136 |
+
logger.warning("Failed to load Kokoro pipeline, falling back to dummy TTS")
|
137 |
+
yield from DummyTTS(self.lang_code).generate_speech_stream(text, voice, speed)
|
138 |
+
return
|
139 |
+
|
140 |
+
try:
|
141 |
+
# Generate speech stream
|
142 |
+
generator = self.pipeline(text, voice=voice, speed=speed)
|
143 |
+
for _, _, audio in generator:
|
144 |
+
yield 24000, audio
|
145 |
+
except Exception as e:
|
146 |
+
logger.error(f"Error generating speech stream with Kokoro: {str(e)}", exc_info=True)
|
147 |
+
logger.warning("Kokoro TTS engine failed, falling back to dummy TTS")
|
148 |
+
yield from DummyTTS(self.lang_code).generate_speech_stream(text, voice, speed)
|
utils/tts_kokoro_space.py
DELETED
@@ -1,100 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import time
|
3 |
-
import logging
|
4 |
-
import numpy as np
|
5 |
-
import soundfile as sf
|
6 |
-
from typing import Optional, Tuple, Generator
|
7 |
-
|
8 |
-
# Configure logging
|
9 |
-
logging.basicConfig(level=logging.INFO)
|
10 |
-
logger = logging.getLogger(__name__)
|
11 |
-
|
12 |
-
# Constants
|
13 |
-
DEFAULT_SAMPLE_RATE = 24000
|
14 |
-
|
15 |
-
# Global client instance (lazy loaded)
|
16 |
-
_client = None
|
17 |
-
|
18 |
-
|
19 |
-
def _get_client():
|
20 |
-
"""Lazy-load the Kokoro Space client to avoid loading it until needed"""
|
21 |
-
global _client
|
22 |
-
if _client is None:
|
23 |
-
logger.info("Loading Kokoro Space client...")
|
24 |
-
try:
|
25 |
-
# Import gradio client
|
26 |
-
from gradio_client import Client
|
27 |
-
|
28 |
-
# Initialize the client
|
29 |
-
logger.info("Initializing Kokoro Space client")
|
30 |
-
_client = Client("Remsky/Kokoro-TTS-Zero")
|
31 |
-
|
32 |
-
# Log client details
|
33 |
-
logger.info("Kokoro Space client loaded successfully")
|
34 |
-
logger.info(f"Client type: {type(_client).__name__}")
|
35 |
-
except ImportError as import_err:
|
36 |
-
logger.error(f"Import error loading Kokoro Space client: {import_err}")
|
37 |
-
logger.error("This may indicate missing dependencies")
|
38 |
-
raise
|
39 |
-
except Exception as e:
|
40 |
-
logger.error(f"Error loading Kokoro Space client: {e}", exc_info=True)
|
41 |
-
logger.error(f"Error type: {type(e).__name__}")
|
42 |
-
raise
|
43 |
-
return _client
|
44 |
-
|
45 |
-
|
46 |
-
def generate_speech(text: str, language: str = "z", voice: str = "af_nova", speed: float = 1.0) -> str:
|
47 |
-
"""Public interface for TTS generation using Kokoro Space
|
48 |
-
|
49 |
-
This is a legacy function maintained for backward compatibility.
|
50 |
-
New code should use the factory pattern implementation directly.
|
51 |
-
|
52 |
-
Args:
|
53 |
-
text (str): Input text to synthesize
|
54 |
-
language (str): Language code (not used in Kokoro Space, kept for API compatibility)
|
55 |
-
voice (str): Voice ID to use (e.g., 'af_nova', 'af_bella', etc.)
|
56 |
-
speed (float): Speech speed multiplier (0.5 to 2.0)
|
57 |
-
|
58 |
-
Returns:
|
59 |
-
str: Path to the generated audio file
|
60 |
-
"""
|
61 |
-
logger.info(f"Legacy Kokoro Space generate_speech called with text length: {len(text)}")
|
62 |
-
|
63 |
-
# Use the new implementation via factory pattern
|
64 |
-
from utils.tts_engines import KokoroSpaceTTSEngine
|
65 |
-
|
66 |
-
try:
|
67 |
-
# Create a Kokoro Space engine and generate speech
|
68 |
-
kokoro_space_engine = KokoroSpaceTTSEngine(language)
|
69 |
-
return kokoro_space_engine.generate_speech(text, voice, speed)
|
70 |
-
except Exception as e:
|
71 |
-
logger.error(f"Error in legacy Kokoro Space generate_speech: {str(e)}", exc_info=True)
|
72 |
-
# Fall back to dummy TTS
|
73 |
-
from utils.tts_base import DummyTTSEngine
|
74 |
-
dummy_engine = DummyTTSEngine()
|
75 |
-
return dummy_engine.generate_speech(text)
|
76 |
-
|
77 |
-
|
78 |
-
def _create_output_dir() -> str:
|
79 |
-
"""Create output directory for audio files
|
80 |
-
|
81 |
-
Returns:
|
82 |
-
str: Path to the output directory
|
83 |
-
"""
|
84 |
-
output_dir = "temp/outputs"
|
85 |
-
os.makedirs(output_dir, exist_ok=True)
|
86 |
-
return output_dir
|
87 |
-
|
88 |
-
|
89 |
-
def _generate_output_path(prefix: str = "output") -> str:
|
90 |
-
"""Generate a unique output path for audio files
|
91 |
-
|
92 |
-
Args:
|
93 |
-
prefix (str): Prefix for the output filename
|
94 |
-
|
95 |
-
Returns:
|
96 |
-
str: Path to the output file
|
97 |
-
"""
|
98 |
-
output_dir = _create_output_dir()
|
99 |
-
timestamp = int(time.time())
|
100 |
-
return f"{output_dir}/{prefix}_{timestamp}.wav"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|