Spaces:
Running
Running
from torch.utils.data import Dataset | |
import torch | |
class NerDataset(Dataset): | |
def __init__(self, embeddings, labels): | |
super().__init__() | |
self.embeddings = embeddings | |
self.labels = labels | |
def __len__(self): | |
return len(self.embeddings) | |
def __getitem__(self, idx): | |
return self.embeddings[idx], self.labels[idx] | |
def collate_fn(batch): # Batch_size x Seq_length x 768 | |
embeddings, labels = zip(*batch) | |
lengths = [e.size(0) for e in embeddings] | |
max_len = max(lengths) | |
padded_embs = torch.stack([ | |
torch.cat([e, torch.zeros(max_len - e.size(0), e.size(1))]) for e in embeddings | |
]) | |
padded_labels = torch.stack([ | |
torch.cat([l, torch.full((max_len - l.size(0),), -1, dtype=torch.long)]) for l in labels | |
]) | |
return padded_embs, padded_labels, lengths | |