from src.predict import predict from sklearn.metrics import precision_recall_fscore_support, accuracy_score, classification_report def evaluate(model, loader, count_loss=True, report=False): # Model Preidction (Inference) all_preds, all_true, loss = predict(model, loader, count_loss) class_report = None # Get evaluation metric precision, recall, f1, _ = precision_recall_fscore_support(all_true, all_preds, average='macro', zero_division=0) acc = accuracy_score(all_true, all_preds) # Get classification report if report: class_report = classification_report(all_true, all_preds) return precision, recall, f1, acc, loss, class_report def evaluate_ignore_O(model, loader): pass