Spaces:
Build error
Build error
File size: 22,941 Bytes
3ed3379 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 |
from typing import Optional, Tuple, Dict
import torch
import numpy as np
from tqdm import tqdm
from ldm.modules.diffusionmodules.util import make_beta_schedule
from model.cond_fn import Guidance
from utils.image import (
wavelet_reconstruction, adaptive_instance_normalization
)
# https://github.com/openai/guided-diffusion/blob/main/guided_diffusion/respace.py
def space_timesteps(num_timesteps, section_counts):
"""
Create a list of timesteps to use from an original diffusion process,
given the number of timesteps we want to take from equally-sized portions
of the original process.
For example, if there's 300 timesteps and the section counts are [10,15,20]
then the first 100 timesteps are strided to be 10 timesteps, the second 100
are strided to be 15 timesteps, and the final 100 are strided to be 20.
If the stride is a string starting with "ddim", then the fixed striding
from the DDIM paper is used, and only one section is allowed.
:param num_timesteps: the number of diffusion steps in the original
process to divide up.
:param section_counts: either a list of numbers, or a string containing
comma-separated numbers, indicating the step count
per section. As a special case, use "ddimN" where N
is a number of steps to use the striding from the
DDIM paper.
:return: a set of diffusion steps from the original process to use.
"""
if isinstance(section_counts, str):
if section_counts.startswith("ddim"):
desired_count = int(section_counts[len("ddim") :])
for i in range(1, num_timesteps):
if len(range(0, num_timesteps, i)) == desired_count:
return set(range(0, num_timesteps, i))
raise ValueError(
f"cannot create exactly {num_timesteps} steps with an integer stride"
)
section_counts = [int(x) for x in section_counts.split(",")]
size_per = num_timesteps // len(section_counts)
extra = num_timesteps % len(section_counts)
start_idx = 0
all_steps = []
for i, section_count in enumerate(section_counts):
size = size_per + (1 if i < extra else 0)
if size < section_count:
raise ValueError(
f"cannot divide section of {size} steps into {section_count}"
)
if section_count <= 1:
frac_stride = 1
else:
frac_stride = (size - 1) / (section_count - 1)
cur_idx = 0.0
taken_steps = []
for _ in range(section_count):
taken_steps.append(start_idx + round(cur_idx))
cur_idx += frac_stride
all_steps += taken_steps
start_idx += size
return set(all_steps)
# https://github.com/openai/guided-diffusion/blob/main/guided_diffusion/gaussian_diffusion.py
def _extract_into_tensor(arr, timesteps, broadcast_shape):
"""
Extract values from a 1-D numpy array for a batch of indices.
:param arr: the 1-D numpy array.
:param timesteps: a tensor of indices into the array to extract.
:param broadcast_shape: a larger shape of K dimensions with the batch
dimension equal to the length of timesteps.
:return: a tensor of shape [batch_size, 1, ...] where the shape has K dims.
"""
res = torch.from_numpy(arr).to(device=timesteps.device)[timesteps].float()
while len(res.shape) < len(broadcast_shape):
res = res[..., None]
return res.expand(broadcast_shape)
class SpacedSampler:
"""
Implementation for spaced sampling schedule proposed in IDDPM. This class is designed
for sampling ControlLDM.
https://arxiv.org/pdf/2102.09672.pdf
"""
def __init__(
self,
model: "ControlLDM",
schedule: str="linear",
var_type: str="fixed_small"
) -> "SpacedSampler":
self.model = model
self.original_num_steps = model.num_timesteps
self.schedule = schedule
self.var_type = var_type
def make_schedule(self, num_steps: int) -> None:
"""
Initialize sampling parameters according to `num_steps`.
Args:
num_steps (int): Sampling steps.
Returns:
None
"""
# NOTE: this schedule, which generates betas linearly in log space, is a little different
# from guided diffusion.
original_betas = make_beta_schedule(
self.schedule, self.original_num_steps, linear_start=self.model.linear_start,
linear_end=self.model.linear_end
)
original_alphas = 1.0 - original_betas
original_alphas_cumprod = np.cumprod(original_alphas, axis=0)
# calcualte betas for spaced sampling
# https://github.com/openai/guided-diffusion/blob/main/guided_diffusion/respace.py
used_timesteps = space_timesteps(self.original_num_steps, str(num_steps))
print(f"timesteps used in spaced sampler: \n\t{sorted(list(used_timesteps))}")
betas = []
last_alpha_cumprod = 1.0
for i, alpha_cumprod in enumerate(original_alphas_cumprod):
if i in used_timesteps:
# marginal distribution is the same as q(x_{S_t}|x_0)
betas.append(1 - alpha_cumprod / last_alpha_cumprod)
last_alpha_cumprod = alpha_cumprod
assert len(betas) == num_steps
betas = np.array(betas, dtype=np.float64)
self.betas = betas
self.timesteps = np.array(sorted(list(used_timesteps)), dtype=np.int32) # e.g. [0, 10, 20, ...]
alphas = 1.0 - betas
self.alphas_cumprod = np.cumprod(alphas, axis=0)
self.alphas_cumprod_prev = np.append(1.0, self.alphas_cumprod[:-1])
self.alphas_cumprod_next = np.append(self.alphas_cumprod[1:], 0.0)
assert self.alphas_cumprod_prev.shape == (num_steps, )
# calculations for diffusion q(x_t | x_{t-1}) and others
self.sqrt_alphas_cumprod = np.sqrt(self.alphas_cumprod)
self.sqrt_one_minus_alphas_cumprod = np.sqrt(1.0 - self.alphas_cumprod)
self.log_one_minus_alphas_cumprod = np.log(1.0 - self.alphas_cumprod)
self.sqrt_recip_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod)
self.sqrt_recipm1_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod - 1)
# calculations for posterior q(x_{t-1} | x_t, x_0)
self.posterior_variance = (
betas * (1.0 - self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod)
)
# log calculation clipped because the posterior variance is 0 at the
# beginning of the diffusion chain.
self.posterior_log_variance_clipped = np.log(
np.append(self.posterior_variance[1], self.posterior_variance[1:])
)
self.posterior_mean_coef1 = (
betas * np.sqrt(self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod)
)
self.posterior_mean_coef2 = (
(1.0 - self.alphas_cumprod_prev)
* np.sqrt(alphas)
/ (1.0 - self.alphas_cumprod)
)
def q_sample(
self,
x_start: torch.Tensor,
t: torch.Tensor,
noise: Optional[torch.Tensor]=None
) -> torch.Tensor:
"""
Implement the marginal distribution q(x_t|x_0).
Args:
x_start (torch.Tensor): Images (NCHW) sampled from data distribution.
t (torch.Tensor): Timestep (N) for diffusion process. `t` serves as an index
to get parameters for each timestep.
noise (torch.Tensor, optional): Specify the noise (NCHW) added to `x_start`.
Returns:
x_t (torch.Tensor): The noisy images.
"""
if noise is None:
noise = torch.randn_like(x_start)
assert noise.shape == x_start.shape
return (
_extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
+ _extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape)
* noise
)
def q_posterior_mean_variance(
self,
x_start: torch.Tensor,
x_t: torch.Tensor,
t: torch.Tensor
) -> Tuple[torch.Tensor]:
"""
Implement the posterior distribution q(x_{t-1}|x_t, x_0).
Args:
x_start (torch.Tensor): The predicted images (NCHW) in timestep `t`.
x_t (torch.Tensor): The sampled intermediate variables (NCHW) of timestep `t`.
t (torch.Tensor): Timestep (N) of `x_t`. `t` serves as an index to get
parameters for each timestep.
Returns:
posterior_mean (torch.Tensor): Mean of the posterior distribution.
posterior_variance (torch.Tensor): Variance of the posterior distribution.
posterior_log_variance_clipped (torch.Tensor): Log variance of the posterior distribution.
"""
assert x_start.shape == x_t.shape
posterior_mean = (
_extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start
+ _extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t
)
posterior_variance = _extract_into_tensor(self.posterior_variance, t, x_t.shape)
posterior_log_variance_clipped = _extract_into_tensor(
self.posterior_log_variance_clipped, t, x_t.shape
)
assert (
posterior_mean.shape[0]
== posterior_variance.shape[0]
== posterior_log_variance_clipped.shape[0]
== x_start.shape[0]
)
return posterior_mean, posterior_variance, posterior_log_variance_clipped
def _predict_xstart_from_eps(
self,
x_t: torch.Tensor,
t: torch.Tensor,
eps: torch.Tensor
) -> torch.Tensor:
assert x_t.shape == eps.shape
return (
_extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t
- _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * eps
)
def predict_noise(
self,
x: torch.Tensor,
t: torch.Tensor,
cond: Dict[str, torch.Tensor],
cfg_scale: float,
uncond: Optional[Dict[str, torch.Tensor]]
) -> torch.Tensor:
if uncond is None or cfg_scale == 1.:
model_output = self.model.apply_model(x, t, cond)
else:
# apply classifier-free guidance
model_cond = self.model.apply_model(x, t, cond)
model_uncond = self.model.apply_model(x, t, uncond)
model_output = model_uncond + cfg_scale * (model_cond - model_uncond)
if self.model.parameterization == "v":
e_t = self.model.predict_eps_from_z_and_v(x, t, model_output)
else:
e_t = model_output
return e_t
def apply_cond_fn(
self,
x: torch.Tensor,
cond: Dict[str, torch.Tensor],
t: torch.Tensor,
index: torch.Tensor,
cond_fn: Guidance,
cfg_scale: float,
uncond: Optional[Dict[str, torch.Tensor]]
) -> torch.Tensor:
device = x.device
t_now = int(t[0].item()) + 1
# ----------------- predict noise and x0 ----------------- #
e_t = self.predict_noise(
x, t, cond, cfg_scale, uncond
)
pred_x0: torch.Tensor = self._predict_xstart_from_eps(x_t=x, t=index, eps=e_t)
model_mean, _, _ = self.q_posterior_mean_variance(
x_start=pred_x0, x_t=x, t=index
)
# apply classifier guidance for multiple times
for _ in range(cond_fn.repeat):
# ----------------- compute gradient for x0 in latent space ----------------- #
target, pred = None, None
if cond_fn.space == "latent":
target = self.model.get_first_stage_encoding(
self.model.encode_first_stage(cond_fn.target.to(device))
)
pred = pred_x0
elif cond_fn.space == "rgb":
# We need to backward gradient to x0 in latent space, so it's required
# to trace the computation graph while decoding the latent.
with torch.enable_grad():
pred_x0.requires_grad_(True)
target = cond_fn.target.to(device)
pred = self.model.decode_first_stage_with_grad(pred_x0)
else:
raise NotImplementedError(cond_fn.space)
delta_pred = cond_fn(target, pred, t_now)
# ----------------- apply classifier guidance ----------------- #
if delta_pred is not None:
if cond_fn.space == "rgb":
# compute gradient for pred_x0
pred.backward(delta_pred)
delta_pred_x0 = pred_x0.grad
# update prex_x0
pred_x0 += delta_pred_x0
# our classifier guidance is equivalent to multiply delta_pred_x0
# by a constant and then add it to model_mean, We set the constant
# to 0.5
model_mean += 0.5 * delta_pred_x0
pred_x0.grad.zero_()
else:
delta_pred_x0 = delta_pred
pred_x0 += delta_pred_x0
model_mean += 0.5 * delta_pred_x0
else:
# means stop guidance
break
return model_mean.detach().clone(), pred_x0.detach().clone()
@torch.no_grad()
def p_sample(
self,
x: torch.Tensor,
cond: Dict[str, torch.Tensor],
t: torch.Tensor,
index: torch.Tensor,
cfg_scale: float,
uncond: Optional[Dict[str, torch.Tensor]],
cond_fn: Optional[Guidance]
) -> torch.Tensor:
# variance of posterior distribution q(x_{t-1}|x_t, x_0)
model_variance = {
"fixed_large": np.append(self.posterior_variance[1], self.betas[1:]),
"fixed_small": self.posterior_variance
}[self.var_type]
model_variance = _extract_into_tensor(model_variance, index, x.shape)
# mean of posterior distribution q(x_{t-1}|x_t, x_0)
if cond_fn is not None:
# apply classifier guidance
model_mean, pred_x0 = self.apply_cond_fn(
x, cond, t, index, cond_fn,
cfg_scale, uncond
)
else:
e_t = self.predict_noise(
x, t, cond, cfg_scale, uncond
)
pred_x0 = self._predict_xstart_from_eps(x_t=x, t=index, eps=e_t)
model_mean, _, _ = self.q_posterior_mean_variance(
x_start=pred_x0, x_t=x, t=index
)
# sample x_t from q(x_{t-1}|x_t, x_0)
noise = torch.randn_like(x)
nonzero_mask = (
(index != 0).float().view(-1, *([1] * (len(x.shape) - 1)))
)
x_prev = model_mean + nonzero_mask * torch.sqrt(model_variance) * noise
return x_prev
@torch.no_grad()
def sample_with_mixdiff(
self,
tile_size: int,
tile_stride: int,
steps: int,
shape: Tuple[int],
cond_img: torch.Tensor,
positive_prompt: str,
negative_prompt: str,
x_T: Optional[torch.Tensor]=None,
cfg_scale: float=1.,
cond_fn: Optional[Guidance]=None,
color_fix_type: str="none"
) -> torch.Tensor:
def _sliding_windows(h: int, w: int, tile_size: int, tile_stride: int) -> Tuple[int, int, int, int]:
hi_list = list(range(0, h - tile_size + 1, tile_stride))
if (h - tile_size) % tile_stride != 0:
hi_list.append(h - tile_size)
wi_list = list(range(0, w - tile_size + 1, tile_stride))
if (w - tile_size) % tile_stride != 0:
wi_list.append(w - tile_size)
coords = []
for hi in hi_list:
for wi in wi_list:
coords.append((hi, hi + tile_size, wi, wi + tile_size))
return coords
# make sampling parameters (e.g. sigmas)
self.make_schedule(num_steps=steps)
device = next(self.model.parameters()).device
b, _, h, w = shape
if x_T is None:
img = torch.randn(shape, dtype=torch.float32, device=device)
else:
img = x_T
# create buffers for accumulating predicted noise of different diffusion process
noise_buffer = torch.zeros_like(img)
count = torch.zeros(shape, dtype=torch.long, device=device)
# timesteps iterator
time_range = np.flip(self.timesteps) # [1000, 950, 900, ...]
total_steps = len(self.timesteps)
iterator = tqdm(time_range, desc="Spaced Sampler", total=total_steps)
# sampling loop
for i, step in enumerate(iterator):
ts = torch.full((b,), step, device=device, dtype=torch.long)
index = torch.full_like(ts, fill_value=total_steps - i - 1)
# predict noise for each tile
tiles_iterator = tqdm(_sliding_windows(h, w, tile_size // 8, tile_stride // 8))
for hi, hi_end, wi, wi_end in tiles_iterator:
tiles_iterator.set_description(f"Process tile with location ({hi} {hi_end}) ({wi} {wi_end})")
# noisy latent of this diffusion process (tile) at this step
tile_img = img[:, :, hi:hi_end, wi:wi_end]
# prepare condition for this tile
tile_cond_img = cond_img[:, :, hi * 8:hi_end * 8, wi * 8: wi_end * 8]
tile_cond = {
"c_latent": [self.model.apply_condition_encoder(tile_cond_img)],
"c_crossattn": [self.model.get_learned_conditioning([positive_prompt] * b)]
}
tile_uncond = {
"c_latent": [self.model.apply_condition_encoder(tile_cond_img)],
"c_crossattn": [self.model.get_learned_conditioning([negative_prompt] * b)]
}
# TODO: tile_cond_fn
# predict noise for this tile
tile_noise = self.predict_noise(tile_img, ts, tile_cond, cfg_scale, tile_uncond)
# accumulate mean and variance
noise_buffer[:, :, hi:hi_end, wi:wi_end] += tile_noise
count[:, :, hi:hi_end, wi:wi_end] += 1
if (count == 0).any().item():
print(f"find count == 0!")
# average on noise
noise_buffer.div_(count)
# sample previous latent
pred_x0 = self._predict_xstart_from_eps(x_t=img, t=index, eps=noise_buffer)
mean, _, _ = self.q_posterior_mean_variance(
x_start=pred_x0, x_t=img, t=index
)
variance = {
"fixed_large": np.append(self.posterior_variance[1], self.betas[1:]),
"fixed_small": self.posterior_variance
}[self.var_type]
variance = _extract_into_tensor(variance, index, noise_buffer.shape)
nonzero_mask = (
(index != 0).float().view(-1, *([1] * (len(noise_buffer.shape) - 1)))
)
img = mean + nonzero_mask * torch.sqrt(variance) * torch.randn_like(mean)
noise_buffer.zero_()
count.zero_()
# decode samples of each diffusion process
img_buffer = torch.zeros_like(cond_img)
count = torch.zeros_like(cond_img, dtype=torch.long)
for hi, hi_end, wi, wi_end in _sliding_windows(h, w, tile_size // 8, tile_stride // 8):
tile_img = img[:, :, hi:hi_end, wi:wi_end]
tile_img_pixel = (self.model.decode_first_stage(tile_img) + 1) / 2
tile_cond_img = cond_img[:, :, hi * 8:hi_end * 8, wi * 8: wi_end * 8]
# apply color correction (borrowed from StableSR)
if color_fix_type == "adain":
tile_img_pixel = adaptive_instance_normalization(tile_img_pixel, tile_cond_img)
elif color_fix_type == "wavelet":
tile_img_pixel = wavelet_reconstruction(tile_img_pixel, tile_cond_img)
else:
assert color_fix_type == "none", f"unexpected color fix type: {color_fix_type}"
img_buffer[:, :, hi * 8:hi_end * 8, wi * 8: wi_end * 8] += tile_img_pixel
count[:, :, hi * 8:hi_end * 8, wi * 8: wi_end * 8] += 1
img_buffer.div_(count)
return img_buffer
@torch.no_grad()
def sample(
self,
steps: int,
shape: Tuple[int],
cond_img: torch.Tensor,
positive_prompt: str,
negative_prompt: str,
x_T: Optional[torch.Tensor]=None,
cfg_scale: float=1.,
cond_fn: Optional[Guidance]=None,
color_fix_type: str="none"
) -> torch.Tensor:
self.make_schedule(num_steps=steps)
device = next(self.model.parameters()).device
b = shape[0]
if x_T is None:
img = torch.randn(shape, device=device)
else:
img = x_T
time_range = np.flip(self.timesteps) # [1000, 950, 900, ...]
total_steps = len(self.timesteps)
iterator = tqdm(time_range, desc="Spaced Sampler", total=total_steps)
cond = {
"c_latent": [self.model.apply_condition_encoder(cond_img)],
"c_crossattn": [self.model.get_learned_conditioning([positive_prompt] * b)]
}
uncond = {
"c_latent": [self.model.apply_condition_encoder(cond_img)],
"c_crossattn": [self.model.get_learned_conditioning([negative_prompt] * b)]
}
for i, step in enumerate(iterator):
ts = torch.full((b,), step, device=device, dtype=torch.long)
index = torch.full_like(ts, fill_value=total_steps - i - 1)
img = self.p_sample(
img, cond, ts, index=index,
cfg_scale=cfg_scale, uncond=uncond,
cond_fn=cond_fn
)
img_pixel = (self.model.decode_first_stage(img) + 1) / 2
# apply color correction (borrowed from StableSR)
if color_fix_type == "adain":
img_pixel = adaptive_instance_normalization(img_pixel, cond_img)
elif color_fix_type == "wavelet":
img_pixel = wavelet_reconstruction(img_pixel, cond_img)
else:
assert color_fix_type == "none", f"unexpected color fix type: {color_fix_type}"
return img_pixel
|