target: model.cldm.ControlLDM params: linear_start: 0.00085 linear_end: 0.0120 num_timesteps_cond: 1 log_every_t: 200 timesteps: 1000 first_stage_key: "jpg" cond_stage_key: "txt" control_key: "hint" image_size: 64 channels: 4 cond_stage_trainable: false conditioning_key: crossattn monitor: val/loss_simple_ema scale_factor: 0.18215 use_ema: False sd_locked: True only_mid_control: False # Learning rate. learning_rate: 1e-4 control_stage_config: target: model.cldm.ControlNet params: use_checkpoint: True image_size: 32 # unused in_channels: 4 hint_channels: 4 model_channels: 320 attention_resolutions: [ 4, 2, 1 ] num_res_blocks: 2 channel_mult: [ 1, 2, 4, 4 ] num_head_channels: 64 # need to fix for flash-attn use_spatial_transformer: True use_linear_in_transformer: True transformer_depth: 1 context_dim: 1024 legacy: False unet_config: target: model.cldm.ControlledUnetModel params: use_checkpoint: True image_size: 32 # unused in_channels: 4 out_channels: 4 model_channels: 320 attention_resolutions: [ 4, 2, 1 ] num_res_blocks: 2 channel_mult: [ 1, 2, 4, 4 ] num_head_channels: 64 # need to fix for flash-attn use_spatial_transformer: True use_linear_in_transformer: True transformer_depth: 1 context_dim: 1024 legacy: False first_stage_config: target: ldm.models.autoencoder.AutoencoderKL params: embed_dim: 4 monitor: val/rec_loss ddconfig: #attn_type: "vanilla-xformers" double_z: true z_channels: 4 resolution: 256 in_channels: 3 out_ch: 3 ch: 128 ch_mult: - 1 - 2 - 4 - 4 num_res_blocks: 2 attn_resolutions: [] dropout: 0.0 lossconfig: target: torch.nn.Identity cond_stage_config: target: ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder params: freeze: True layer: "penultimate" preprocess_config: target: model.swinir.SwinIR params: img_size: 64 patch_size: 1 in_chans: 3 embed_dim: 180 depths: [6, 6, 6, 6, 6, 6, 6, 6] num_heads: [6, 6, 6, 6, 6, 6, 6, 6] window_size: 8 mlp_ratio: 2 sf: 8 img_range: 1.0 upsampler: "nearest+conv" resi_connection: "1conv" unshuffle: True unshuffle_scale: 8