from typing import Mapping, Any import copy from collections import OrderedDict import einops import torch import torch as th import torch.nn as nn from ldm.modules.diffusionmodules.util import ( conv_nd, linear, zero_module, timestep_embedding, ) from ldm.modules.attention import SpatialTransformer from ldm.modules.diffusionmodules.openaimodel import TimestepEmbedSequential, ResBlock, Downsample, AttentionBlock, UNetModel from ldm.models.diffusion.ddpm import LatentDiffusion from ldm.util import log_txt_as_img, exists, instantiate_from_config from ldm.modules.distributions.distributions import DiagonalGaussianDistribution from utils.common import frozen_module from .spaced_sampler import SpacedSampler class ControlledUnetModel(UNetModel): def forward(self, x, timesteps=None, context=None, control=None, only_mid_control=False, **kwargs): hs = [] with torch.no_grad(): t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False) emb = self.time_embed(t_emb) h = x.type(self.dtype) for module in self.input_blocks: h = module(h, emb, context) hs.append(h) h = self.middle_block(h, emb, context) if control is not None: h += control.pop() for i, module in enumerate(self.output_blocks): if only_mid_control or control is None: h = torch.cat([h, hs.pop()], dim=1) else: h = torch.cat([h, hs.pop() + control.pop()], dim=1) h = module(h, emb, context) h = h.type(x.dtype) return self.out(h) class ControlNet(nn.Module): def __init__( self, image_size, in_channels, model_channels, hint_channels, num_res_blocks, attention_resolutions, dropout=0, channel_mult=(1, 2, 4, 8), conv_resample=True, dims=2, use_checkpoint=False, use_fp16=False, num_heads=-1, num_head_channels=-1, num_heads_upsample=-1, use_scale_shift_norm=False, resblock_updown=False, use_new_attention_order=False, use_spatial_transformer=False, # custom transformer support transformer_depth=1, # custom transformer support context_dim=None, # custom transformer support n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model legacy=True, disable_self_attentions=None, num_attention_blocks=None, disable_middle_self_attn=False, use_linear_in_transformer=False, ): super().__init__() if use_spatial_transformer: assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...' if context_dim is not None: assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...' from omegaconf.listconfig import ListConfig if type(context_dim) == ListConfig: context_dim = list(context_dim) if num_heads_upsample == -1: num_heads_upsample = num_heads if num_heads == -1: assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set' if num_head_channels == -1: assert num_heads != -1, 'Either num_heads or num_head_channels has to be set' self.dims = dims self.image_size = image_size self.in_channels = in_channels self.model_channels = model_channels if isinstance(num_res_blocks, int): self.num_res_blocks = len(channel_mult) * [num_res_blocks] else: if len(num_res_blocks) != len(channel_mult): raise ValueError("provide num_res_blocks either as an int (globally constant) or " "as a list/tuple (per-level) with the same length as channel_mult") self.num_res_blocks = num_res_blocks if disable_self_attentions is not None: # should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not assert len(disable_self_attentions) == len(channel_mult) if num_attention_blocks is not None: assert len(num_attention_blocks) == len(self.num_res_blocks) assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks)))) print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. " f"This option has LESS priority than attention_resolutions {attention_resolutions}, " f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, " f"attention will still not be set.") self.attention_resolutions = attention_resolutions self.dropout = dropout self.channel_mult = channel_mult self.conv_resample = conv_resample self.use_checkpoint = use_checkpoint self.dtype = th.float16 if use_fp16 else th.float32 self.num_heads = num_heads self.num_head_channels = num_head_channels self.num_heads_upsample = num_heads_upsample self.predict_codebook_ids = n_embed is not None time_embed_dim = model_channels * 4 self.time_embed = nn.Sequential( linear(model_channels, time_embed_dim), nn.SiLU(), linear(time_embed_dim, time_embed_dim), ) self.input_blocks = nn.ModuleList( [ TimestepEmbedSequential( conv_nd(dims, in_channels + hint_channels, model_channels, 3, padding=1) ) ] ) self.zero_convs = nn.ModuleList([self.make_zero_conv(model_channels)]) self._feature_size = model_channels input_block_chans = [model_channels] ch = model_channels ds = 1 for level, mult in enumerate(channel_mult): for nr in range(self.num_res_blocks[level]): layers = [ ResBlock( ch, time_embed_dim, dropout, out_channels=mult * model_channels, dims=dims, use_checkpoint=use_checkpoint, use_scale_shift_norm=use_scale_shift_norm, ) ] ch = mult * model_channels if ds in attention_resolutions: if num_head_channels == -1: dim_head = ch // num_heads else: num_heads = ch // num_head_channels dim_head = num_head_channels if legacy: # num_heads = 1 dim_head = ch // num_heads if use_spatial_transformer else num_head_channels if exists(disable_self_attentions): disabled_sa = disable_self_attentions[level] else: disabled_sa = False if not exists(num_attention_blocks) or nr < num_attention_blocks[level]: layers.append( AttentionBlock( ch, use_checkpoint=use_checkpoint, num_heads=num_heads, num_head_channels=dim_head, use_new_attention_order=use_new_attention_order, ) if not use_spatial_transformer else SpatialTransformer( ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim, disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer, use_checkpoint=use_checkpoint ) ) self.input_blocks.append(TimestepEmbedSequential(*layers)) self.zero_convs.append(self.make_zero_conv(ch)) self._feature_size += ch input_block_chans.append(ch) if level != len(channel_mult) - 1: out_ch = ch self.input_blocks.append( TimestepEmbedSequential( ResBlock( ch, time_embed_dim, dropout, out_channels=out_ch, dims=dims, use_checkpoint=use_checkpoint, use_scale_shift_norm=use_scale_shift_norm, down=True, ) if resblock_updown else Downsample( ch, conv_resample, dims=dims, out_channels=out_ch ) ) ) ch = out_ch input_block_chans.append(ch) self.zero_convs.append(self.make_zero_conv(ch)) ds *= 2 self._feature_size += ch if num_head_channels == -1: dim_head = ch // num_heads else: num_heads = ch // num_head_channels dim_head = num_head_channels if legacy: # num_heads = 1 dim_head = ch // num_heads if use_spatial_transformer else num_head_channels self.middle_block = TimestepEmbedSequential( ResBlock( ch, time_embed_dim, dropout, dims=dims, use_checkpoint=use_checkpoint, use_scale_shift_norm=use_scale_shift_norm, ), AttentionBlock( ch, use_checkpoint=use_checkpoint, num_heads=num_heads, num_head_channels=dim_head, use_new_attention_order=use_new_attention_order, ) if not use_spatial_transformer else SpatialTransformer( # always uses a self-attn ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim, disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer, use_checkpoint=use_checkpoint ), ResBlock( ch, time_embed_dim, dropout, dims=dims, use_checkpoint=use_checkpoint, use_scale_shift_norm=use_scale_shift_norm, ), ) self.middle_block_out = self.make_zero_conv(ch) self._feature_size += ch def make_zero_conv(self, channels): return TimestepEmbedSequential(zero_module(conv_nd(self.dims, channels, channels, 1, padding=0))) def forward(self, x, hint, timesteps, context, **kwargs): t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False) emb = self.time_embed(t_emb) x = torch.cat((x, hint), dim=1) outs = [] h = x.type(self.dtype) for module, zero_conv in zip(self.input_blocks, self.zero_convs): h = module(h, emb, context) outs.append(zero_conv(h, emb, context)) h = self.middle_block(h, emb, context) outs.append(self.middle_block_out(h, emb, context)) return outs class ControlLDM(LatentDiffusion): def __init__( self, control_stage_config: Mapping[str, Any], control_key: str, sd_locked: bool, only_mid_control: bool, learning_rate: float, preprocess_config, *args, **kwargs ) -> "ControlLDM": super().__init__(*args, **kwargs) # instantiate control module self.control_model: ControlNet = instantiate_from_config(control_stage_config) self.control_key = control_key self.sd_locked = sd_locked self.only_mid_control = only_mid_control self.learning_rate = learning_rate self.control_scales = [1.0] * 13 # instantiate preprocess module (SwinIR) self.preprocess_model = instantiate_from_config(preprocess_config) frozen_module(self.preprocess_model) # instantiate condition encoder, since our condition encoder has the same # structure with AE encoder, we just make a copy of AE encoder. please # note that AE encoder's parameters has not been initialized here. self.cond_encoder = nn.Sequential(OrderedDict([ ("encoder", copy.deepcopy(self.first_stage_model.encoder)), # cond_encoder.encoder ("quant_conv", copy.deepcopy(self.first_stage_model.quant_conv)) # cond_encoder.quant_conv ])) frozen_module(self.cond_encoder) def apply_condition_encoder(self, control): c_latent_meanvar = self.cond_encoder(control * 2 - 1) c_latent = DiagonalGaussianDistribution(c_latent_meanvar).mode() # only use mode c_latent = c_latent * self.scale_factor return c_latent @torch.no_grad() def get_input(self, batch, k, bs=None, *args, **kwargs): x, c = super().get_input(batch, self.first_stage_key, *args, **kwargs) control = batch[self.control_key] if bs is not None: control = control[:bs] control = control.to(self.device) control = einops.rearrange(control, 'b h w c -> b c h w') control = control.to(memory_format=torch.contiguous_format).float() lq = control # apply preprocess model control = self.preprocess_model(control) # apply condition encoder c_latent = self.apply_condition_encoder(control) return x, dict(c_crossattn=[c], c_latent=[c_latent], lq=[lq], c_concat=[control]) def apply_model(self, x_noisy, t, cond, *args, **kwargs): assert isinstance(cond, dict) diffusion_model = self.model.diffusion_model cond_txt = torch.cat(cond['c_crossattn'], 1) if cond['c_latent'] is None: eps = diffusion_model(x=x_noisy, timesteps=t, context=cond_txt, control=None, only_mid_control=self.only_mid_control) else: control = self.control_model( x=x_noisy, hint=torch.cat(cond['c_latent'], 1), timesteps=t, context=cond_txt ) control = [c * scale for c, scale in zip(control, self.control_scales)] eps = diffusion_model(x=x_noisy, timesteps=t, context=cond_txt, control=control, only_mid_control=self.only_mid_control) return eps @torch.no_grad() def get_unconditional_conditioning(self, N): return self.get_learned_conditioning([""] * N) @torch.no_grad() def log_images(self, batch, sample_steps=50): log = dict() z, c = self.get_input(batch, self.first_stage_key) c_lq = c["lq"][0] c_latent = c["c_latent"][0] c_cat, c = c["c_concat"][0], c["c_crossattn"][0] log["hq"] = (self.decode_first_stage(z) + 1) / 2 log["control"] = c_cat log["decoded_control"] = (self.decode_first_stage(c_latent) + 1) / 2 log["lq"] = c_lq log["text"] = (log_txt_as_img((512, 512), batch[self.cond_stage_key], size=16) + 1) / 2 samples = self.sample_log( # TODO: remove c_concat from cond cond={"c_concat": [c_cat], "c_crossattn": [c], "c_latent": [c_latent]}, steps=sample_steps ) x_samples = self.decode_first_stage(samples) log["samples"] = (x_samples + 1) / 2 return log @torch.no_grad() def sample_log(self, cond, steps): sampler = SpacedSampler(self) b, c, h, w = cond["c_concat"][0].shape shape = (b, self.channels, h // 8, w // 8) samples = sampler.sample( steps, shape, cond, unconditional_guidance_scale=1.0, unconditional_conditioning=None ) return samples def configure_optimizers(self): lr = self.learning_rate params = list(self.control_model.parameters()) if not self.sd_locked: params += list(self.model.diffusion_model.output_blocks.parameters()) params += list(self.model.diffusion_model.out.parameters()) opt = torch.optim.AdamW(params, lr=lr) return opt def validation_step(self, batch, batch_idx): # TODO: pass