Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -9,8 +9,6 @@ from diffusers.utils import load_image
|
|
9 |
import pandas as pd
|
10 |
import random
|
11 |
import time
|
12 |
-
|
13 |
-
# --- NOUVEAU : Imports pour le LLM (Gemma) ---
|
14 |
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
15 |
|
16 |
# --- Configuration Principale ---
|
@@ -19,6 +17,7 @@ KRYPTO_LORA = {
|
|
19 |
"trigger": "Krypt0",
|
20 |
"adapter_name": "krypt0"
|
21 |
}
|
|
|
22 |
|
23 |
# Charger les prompts
|
24 |
df = pd.read_csv('prompts.csv', header=None)
|
@@ -27,149 +26,134 @@ prompt_values = df.values.flatten()
|
|
27 |
# Récupérer le token
|
28 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
29 |
|
30 |
-
# --- Initialisation des Modèles ---
|
31 |
-
|
32 |
-
|
33 |
dtype = torch.bfloat16
|
34 |
base_model = "black-forest-labs/FLUX.1-dev"
|
35 |
|
36 |
-
# --- NOUVEAU : Chargement
|
37 |
-
|
38 |
-
print(f"Chargement du LLM pour l'amélioration des prompts : {gemma_model_id}")
|
39 |
-
|
40 |
-
# Configuration de la quantization pour charger le modèle en 4-bit.
|
41 |
-
# Cela réduit considérablement l'utilisation de la mémoire.
|
42 |
quantization_config = BitsAndBytesConfig(load_in_4bit=True)
|
43 |
-
|
44 |
-
|
45 |
gemma_model = AutoModelForCausalLM.from_pretrained(
|
46 |
-
|
47 |
quantization_config=quantization_config,
|
48 |
token=HF_TOKEN,
|
49 |
-
device_map=
|
50 |
)
|
51 |
-
print("Modèle Gemma
|
52 |
-
|
53 |
|
54 |
-
# --- Chargement des modèles d'image ---
|
55 |
-
print("
|
56 |
-
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(
|
57 |
-
good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype, token=HF_TOKEN).to(
|
58 |
-
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype, vae=taef1, token=HF_TOKEN).to(
|
59 |
-
print("
|
60 |
|
61 |
-
# Charger le LoRA
|
62 |
-
print(f"
|
63 |
pipe.load_lora_weights(
|
64 |
KRYPTO_LORA['repo'],
|
65 |
low_cpu_mem_usage=True,
|
66 |
adapter_name=KRYPTO_LORA['adapter_name'],
|
67 |
token=HF_TOKEN
|
68 |
)
|
69 |
-
print("LoRA
|
70 |
|
71 |
MAX_SEED = 2**32 - 1
|
72 |
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
|
73 |
|
74 |
-
# --- NOUVEAU : Fonction d'amélioration du prompt ---
|
75 |
-
def improve_prompt_with_gemma(user_prompt):
|
76 |
-
system_prompt = (
|
77 |
-
"Tu dois toujours répondre au user : 'Krypt0 the white scruffy superdog eat banana' "
|
78 |
-
)
|
79 |
-
|
80 |
-
# Formatage pour Gemma
|
81 |
-
chat = [
|
82 |
-
{"role": "user", "content": f"{system_prompt}\n\nUser idea: \"{user_prompt}\""}
|
83 |
-
]
|
84 |
-
prompt_for_gemma = gemma_tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
|
85 |
-
|
86 |
-
inputs = gemma_tokenizer(prompt_for_gemma, return_tensors="pt").to(device)
|
87 |
-
|
88 |
-
# Génération de la réponse
|
89 |
-
outputs = gemma_model.generate(**inputs, max_new_tokens=150, do_sample=True, temperature=0.7)
|
90 |
-
|
91 |
-
# Décodage et nettoyage de la réponse
|
92 |
-
input_length = inputs["input_ids"].shape[1]
|
93 |
-
enhanced_prompt = gemma_tokenizer.decode(outputs[0][input_length:], skip_special_tokens=True)
|
94 |
-
|
95 |
-
return enhanced_prompt.strip()
|
96 |
-
|
97 |
-
|
98 |
-
def calculate_dimensions(aspect_ratio, resolution):
|
99 |
-
resolution = int(resolution)
|
100 |
-
if aspect_ratio == "Square (1:1)":
|
101 |
-
width, height = resolution, resolution
|
102 |
-
elif aspect_ratio == "Portrait (9:16)":
|
103 |
-
width, height = int(resolution * 9 / 16), resolution
|
104 |
-
elif aspect_ratio == "Landscape (16:9)":
|
105 |
-
width, height = resolution, int(resolution * 9 / 16)
|
106 |
-
elif aspect_ratio == "Ultrawide (21:9)":
|
107 |
-
width, height = resolution, int(resolution * 9 / 21)
|
108 |
-
else:
|
109 |
-
width, height = resolution, resolution
|
110 |
-
width = (width // 64) * 64
|
111 |
-
height = (height // 64) * 64
|
112 |
-
return width, height
|
113 |
-
|
114 |
-
def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, progress):
|
115 |
-
pipe.to(device)
|
116 |
-
generator = torch.Generator(device=device).manual_seed(seed)
|
117 |
-
|
118 |
-
image_generator = pipe.flux_pipe_call_that_returns_an_iterable_of_images(
|
119 |
-
prompt=prompt_mash,
|
120 |
-
num_inference_steps=steps,
|
121 |
-
guidance_scale=cfg_scale,
|
122 |
-
width=width,
|
123 |
-
height=height,
|
124 |
-
generator=generator,
|
125 |
-
joint_attention_kwargs={"scale": 1.0},
|
126 |
-
output_type="pil",
|
127 |
-
good_vae=good_vae,
|
128 |
-
)
|
129 |
-
final_image = None
|
130 |
-
for i, image in enumerate(image_generator):
|
131 |
-
final_image = image
|
132 |
-
progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {i + 1}; --total: {steps};"></div></div>'
|
133 |
-
yield image, gr.update(value=progress_bar, visible=True)
|
134 |
-
yield final_image, gr.update(visible=False)
|
135 |
|
136 |
-
|
137 |
-
if new_image is None:
|
138 |
-
return history
|
139 |
-
if history is None:
|
140 |
-
history = []
|
141 |
-
history.insert(0, new_image)
|
142 |
-
return history
|
143 |
-
|
144 |
-
@spaces.GPU(duration=75)
|
145 |
def run_generation(prompt, enhance_prompt, lora_scale, cfg_scale, steps, randomize_seed, seed, aspect_ratio, base_resolution, progress=gr.Progress(track_tqdm=True)):
|
146 |
if not prompt:
|
147 |
raise gr.Error("Prompt cannot be empty.")
|
148 |
|
149 |
-
# ---
|
|
|
150 |
final_prompt = prompt
|
|
|
151 |
if enhance_prompt:
|
|
|
|
|
152 |
print(f"Amélioration du prompt '{prompt}' avec Gemma...")
|
153 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
print(f"Prompt amélioré : {final_prompt}")
|
155 |
-
|
|
|
|
|
156 |
prompt_mash = f"{KRYPTO_LORA['trigger']}, {final_prompt}"
|
157 |
print("Prompt final envoyé au modèle d'image:", prompt_mash)
|
158 |
|
|
|
|
|
|
|
|
|
|
|
159 |
pipe.set_adapters([KRYPTO_LORA['adapter_name']], adapter_weights=[lora_scale])
|
160 |
|
161 |
if randomize_seed:
|
162 |
seed = random.randint(0, MAX_SEED)
|
163 |
|
164 |
width, height = calculate_dimensions(aspect_ratio, base_resolution)
|
165 |
-
print(f"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
|
167 |
-
|
168 |
-
|
|
|
|
|
|
|
169 |
|
170 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
|
172 |
-
# --- Interface Utilisateur (Gradio) ---
|
173 |
css = '''
|
174 |
#title_container { text-align: center; margin-bottom: 1em; }
|
175 |
#title_line { display: flex; justify-content: center; align-items: center; }
|
@@ -182,7 +166,6 @@ css = '''
|
|
182 |
'''
|
183 |
|
184 |
with gr.Blocks(css=css, theme=gr.themes.Soft()) as app:
|
185 |
-
# --- Header ---
|
186 |
gr.HTML(
|
187 |
"""
|
188 |
<div id="title_container">
|
@@ -196,26 +179,18 @@ with gr.Blocks(css=css, theme=gr.themes.Soft()) as app:
|
|
196 |
</div>
|
197 |
"""
|
198 |
)
|
199 |
-
|
200 |
with gr.Row():
|
201 |
-
# --- LEFT COLUMN: CONTROLS ---
|
202 |
with gr.Column(scale=3):
|
203 |
-
# Prompt Controls
|
204 |
with gr.Group():
|
205 |
with gr.Row():
|
206 |
with gr.Column(scale=1, min_width=150):
|
207 |
random_prompt_btn = gr.Button("Random Prompt", elem_id="random_prompt_btn")
|
208 |
with gr.Column(scale=5):
|
209 |
prompt = gr.Textbox(label="Prompt", lines=2, placeholder="e.g., a portrait of a warrior queen")
|
210 |
-
|
211 |
-
# --- NOUVEAU : Case à cocher pour l'amélioration AI ---
|
212 |
enhance_prompt_checkbox = gr.Checkbox(
|
213 |
-
label="Improve prompt with AI",
|
214 |
-
value=True,
|
215 |
info="Uses Gemma to automatically enrich your prompt with more details before generation."
|
216 |
)
|
217 |
-
|
218 |
-
# Image Shape and Style Controls
|
219 |
with gr.Group():
|
220 |
aspect_ratio = gr.Radio(
|
221 |
label="Aspect Ratio",
|
@@ -223,44 +198,31 @@ with gr.Blocks(css=css, theme=gr.themes.Soft()) as app:
|
|
223 |
value="Square (1:1)"
|
224 |
)
|
225 |
lora_scale = gr.Slider(
|
226 |
-
label="Krypt0 Style Strength",
|
227 |
-
minimum=0, maximum=2, step=0.05, value=0.9,
|
228 |
info="Controls how strongly the artistic style is applied. Higher values mean a more stylized image."
|
229 |
)
|
230 |
-
|
231 |
-
# Advanced Settings
|
232 |
with gr.Accordion("Advanced Settings", open=False):
|
233 |
base_resolution = gr.Slider(label="Resolution (longest side)", minimum=768, maximum=1408, step=64, value=1024)
|
234 |
steps = gr.Slider(label="Generation Steps", minimum=4, maximum=50, step=1, value=20)
|
235 |
cfg_scale = gr.Slider(label="Guidance (CFG Scale)", minimum=1, maximum=10, step=0.5, value=3.5)
|
236 |
-
|
237 |
with gr.Row():
|
238 |
randomize_seed = gr.Checkbox(True, label="Random Seed")
|
239 |
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
|
240 |
-
|
241 |
generate_button = gr.Button("Generate", variant="primary")
|
242 |
-
|
243 |
-
# --- RIGHT COLUMN: RESULTS ---
|
244 |
with gr.Column(scale=2):
|
245 |
progress_bar = gr.Markdown(elem_id="progress", visible=False)
|
246 |
result = gr.Image(label="Generated Image", interactive=False, show_share_button=True)
|
247 |
with gr.Accordion("History", open=False):
|
248 |
history_gallery = gr.Gallery(label="History", columns=4, object_fit="contain", interactive=False)
|
249 |
-
|
250 |
-
# --- Event Logic ---
|
251 |
def get_random_prompt():
|
252 |
return random.choice(prompt_values)
|
253 |
-
|
254 |
random_prompt_btn.click(fn=get_random_prompt, inputs=[], outputs=[prompt])
|
255 |
-
|
256 |
-
# MODIFIÉ : Ajout de `enhance_prompt_checkbox` dans les entrées
|
257 |
generation_event = gr.on(
|
258 |
triggers=[generate_button.click, prompt.submit],
|
259 |
fn=run_generation,
|
260 |
inputs=[prompt, enhance_prompt_checkbox, lora_scale, cfg_scale, steps, randomize_seed, seed, aspect_ratio, base_resolution],
|
261 |
outputs=[result, seed, progress_bar]
|
262 |
)
|
263 |
-
|
264 |
generation_event.then(fn=update_history, inputs=[result, history_gallery], outputs=history_gallery)
|
265 |
|
266 |
app.queue(max_size=20)
|
|
|
9 |
import pandas as pd
|
10 |
import random
|
11 |
import time
|
|
|
|
|
12 |
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
13 |
|
14 |
# --- Configuration Principale ---
|
|
|
17 |
"trigger": "Krypt0",
|
18 |
"adapter_name": "krypt0"
|
19 |
}
|
20 |
+
GEMMA_MODEL_ID = "google/gemma-2-9b-it"
|
21 |
|
22 |
# Charger les prompts
|
23 |
df = pd.read_csv('prompts.csv', header=None)
|
|
|
26 |
# Récupérer le token
|
27 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
28 |
|
29 |
+
# --- Initialisation des Modèles (sur CPU uniquement) ---
|
30 |
+
# CORRECTION : On force le chargement sur CPU pour éviter d'initialiser CUDA.
|
31 |
+
device_cpu = "cpu"
|
32 |
dtype = torch.bfloat16
|
33 |
base_model = "black-forest-labs/FLUX.1-dev"
|
34 |
|
35 |
+
# --- NOUVEAU : Chargement de Gemma sur CPU ---
|
36 |
+
print(f"Chargement du LLM {GEMMA_MODEL_ID} sur CPU...")
|
|
|
|
|
|
|
|
|
37 |
quantization_config = BitsAndBytesConfig(load_in_4bit=True)
|
38 |
+
gemma_tokenizer = AutoTokenizer.from_pretrained(GEMMA_MODEL_ID, token=HF_TOKEN)
|
39 |
+
# CORRECTION : On spécifie `device_map` pour forcer le CPU au démarrage.
|
40 |
gemma_model = AutoModelForCausalLM.from_pretrained(
|
41 |
+
GEMMA_MODEL_ID,
|
42 |
quantization_config=quantization_config,
|
43 |
token=HF_TOKEN,
|
44 |
+
device_map={'':device_cpu}
|
45 |
)
|
46 |
+
print("Modèle Gemma chargé.")
|
|
|
47 |
|
48 |
+
# --- Chargement des modèles d'image sur CPU ---
|
49 |
+
print("Chargement des composants du modèle d'image sur CPU...")
|
50 |
+
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device_cpu)
|
51 |
+
good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype, token=HF_TOKEN).to(device_cpu)
|
52 |
+
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype, vae=taef1, token=HF_TOKEN).to(device_cpu)
|
53 |
+
print("Modèles d'image chargés.")
|
54 |
|
55 |
+
# Charger le LoRA (sur le modèle qui est sur CPU)
|
56 |
+
print(f"Chargement du LoRA : {KRYPTO_LORA['repo']}")
|
57 |
pipe.load_lora_weights(
|
58 |
KRYPTO_LORA['repo'],
|
59 |
low_cpu_mem_usage=True,
|
60 |
adapter_name=KRYPTO_LORA['adapter_name'],
|
61 |
token=HF_TOKEN
|
62 |
)
|
63 |
+
print("LoRA chargé.")
|
64 |
|
65 |
MAX_SEED = 2**32 - 1
|
66 |
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
|
67 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
+
@spaces.GPU(duration=120) # Augmentation de la durée pour accommoder le déplacement des modèles
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
def run_generation(prompt, enhance_prompt, lora_scale, cfg_scale, steps, randomize_seed, seed, aspect_ratio, base_resolution, progress=gr.Progress(track_tqdm=True)):
|
71 |
if not prompt:
|
72 |
raise gr.Error("Prompt cannot be empty.")
|
73 |
|
74 |
+
# --- CORRECTION : Le déplacement vers le GPU se fait ICI ---
|
75 |
+
device_gpu = "cuda"
|
76 |
final_prompt = prompt
|
77 |
+
|
78 |
if enhance_prompt:
|
79 |
+
print("Déplacement de Gemma sur le GPU...")
|
80 |
+
gemma_model.to(device_gpu)
|
81 |
print(f"Amélioration du prompt '{prompt}' avec Gemma...")
|
82 |
+
|
83 |
+
system_prompt = (
|
84 |
+
"You are an expert prompt engineer for a text-to-image AI. "
|
85 |
+
"Your task is to take a user's simple idea and transform it into a rich, detailed, and visually descriptive prompt. "
|
86 |
+
"Focus on describing the scene, the subject, the environment, the lighting, the colors, and a potential artistic style. "
|
87 |
+
"Do not add any conversational text or refuse the request. Only output the enhanced prompt."
|
88 |
+
)
|
89 |
+
chat = [{"role": "user", "content": f"{system_prompt}\n\nUser idea: \"{user_prompt}\""}]
|
90 |
+
prompt_for_gemma = gemma_tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
|
91 |
+
inputs = gemma_tokenizer(prompt_for_gemma, return_tensors="pt").to(device_gpu)
|
92 |
+
|
93 |
+
outputs = gemma_model.generate(**inputs, max_new_tokens=150, do_sample=True, temperature=0.7)
|
94 |
+
input_length = inputs["input_ids"].shape[1]
|
95 |
+
final_prompt = gemma_tokenizer.decode(outputs[0][input_length:], skip_special_tokens=True).strip()
|
96 |
+
|
97 |
print(f"Prompt amélioré : {final_prompt}")
|
98 |
+
print("Libération de la mémoire de Gemma (déplacement vers CPU)...")
|
99 |
+
gemma_model.to(device_cpu) # Libère la VRAM du GPU
|
100 |
+
|
101 |
prompt_mash = f"{KRYPTO_LORA['trigger']}, {final_prompt}"
|
102 |
print("Prompt final envoyé au modèle d'image:", prompt_mash)
|
103 |
|
104 |
+
# --- Déplacement du pipeline d'image sur le GPU ---
|
105 |
+
print("Déplacement du pipeline d'image sur le GPU...")
|
106 |
+
pipe.to(device_gpu)
|
107 |
+
good_vae.to(device_gpu)
|
108 |
+
|
109 |
pipe.set_adapters([KRYPTO_LORA['adapter_name']], adapter_weights=[lora_scale])
|
110 |
|
111 |
if randomize_seed:
|
112 |
seed = random.randint(0, MAX_SEED)
|
113 |
|
114 |
width, height = calculate_dimensions(aspect_ratio, base_resolution)
|
115 |
+
print(f"Génération d'une image de {width}x{height} pixels.")
|
116 |
+
|
117 |
+
generator = torch.Generator(device=device_gpu).manual_seed(seed)
|
118 |
+
|
119 |
+
image_generator = pipe.flux_pipe_call_that_returns_an_iterable_of_images(
|
120 |
+
prompt=prompt_mash, num_inference_steps=steps, guidance_scale=cfg_scale,
|
121 |
+
width=width, height=height, generator=generator, output_type="pil", good_vae=good_vae,
|
122 |
+
)
|
123 |
|
124 |
+
final_image = None
|
125 |
+
for i, image in enumerate(image_generator):
|
126 |
+
final_image = image
|
127 |
+
progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {i + 1}; --total: {steps};"></div></div>'
|
128 |
+
yield image, seed, gr.update(value=progress_bar, visible=True)
|
129 |
|
130 |
+
# --- Libération de la VRAM ---
|
131 |
+
print("Libération de la mémoire du pipeline d'image (déplacement vers CPU)...")
|
132 |
+
pipe.to(device_cpu)
|
133 |
+
good_vae.to(device_cpu)
|
134 |
+
torch.cuda.empty_cache()
|
135 |
+
|
136 |
+
yield final_image, seed, gr.update(visible=False)
|
137 |
+
|
138 |
+
# Le reste du code (fonctions d'aide et interface) reste le même
|
139 |
+
|
140 |
+
def calculate_dimensions(aspect_ratio, resolution):
|
141 |
+
resolution = int(resolution)
|
142 |
+
if aspect_ratio == "Square (1:1)": width, height = resolution, resolution
|
143 |
+
elif aspect_ratio == "Portrait (9:16)": width, height = int(resolution * 9 / 16), resolution
|
144 |
+
elif aspect_ratio == "Landscape (16:9)": width, height = resolution, int(resolution * 9 / 16)
|
145 |
+
elif aspect_ratio == "Ultrawide (21:9)": width, height = resolution, int(resolution * 9 / 21)
|
146 |
+
else: width, height = resolution, resolution
|
147 |
+
width = (width // 64) * 64
|
148 |
+
height = (height // 64) * 64
|
149 |
+
return width, height
|
150 |
+
|
151 |
+
def update_history(new_image, history):
|
152 |
+
if new_image is None: return history
|
153 |
+
if history is None: history = []
|
154 |
+
history.insert(0, new_image)
|
155 |
+
return history
|
156 |
|
|
|
157 |
css = '''
|
158 |
#title_container { text-align: center; margin-bottom: 1em; }
|
159 |
#title_line { display: flex; justify-content: center; align-items: center; }
|
|
|
166 |
'''
|
167 |
|
168 |
with gr.Blocks(css=css, theme=gr.themes.Soft()) as app:
|
|
|
169 |
gr.HTML(
|
170 |
"""
|
171 |
<div id="title_container">
|
|
|
179 |
</div>
|
180 |
"""
|
181 |
)
|
|
|
182 |
with gr.Row():
|
|
|
183 |
with gr.Column(scale=3):
|
|
|
184 |
with gr.Group():
|
185 |
with gr.Row():
|
186 |
with gr.Column(scale=1, min_width=150):
|
187 |
random_prompt_btn = gr.Button("Random Prompt", elem_id="random_prompt_btn")
|
188 |
with gr.Column(scale=5):
|
189 |
prompt = gr.Textbox(label="Prompt", lines=2, placeholder="e.g., a portrait of a warrior queen")
|
|
|
|
|
190 |
enhance_prompt_checkbox = gr.Checkbox(
|
191 |
+
label="Improve prompt with AI", value=True,
|
|
|
192 |
info="Uses Gemma to automatically enrich your prompt with more details before generation."
|
193 |
)
|
|
|
|
|
194 |
with gr.Group():
|
195 |
aspect_ratio = gr.Radio(
|
196 |
label="Aspect Ratio",
|
|
|
198 |
value="Square (1:1)"
|
199 |
)
|
200 |
lora_scale = gr.Slider(
|
201 |
+
label="Krypt0 Style Strength", minimum=0, maximum=2, step=0.05, value=0.9,
|
|
|
202 |
info="Controls how strongly the artistic style is applied. Higher values mean a more stylized image."
|
203 |
)
|
|
|
|
|
204 |
with gr.Accordion("Advanced Settings", open=False):
|
205 |
base_resolution = gr.Slider(label="Resolution (longest side)", minimum=768, maximum=1408, step=64, value=1024)
|
206 |
steps = gr.Slider(label="Generation Steps", minimum=4, maximum=50, step=1, value=20)
|
207 |
cfg_scale = gr.Slider(label="Guidance (CFG Scale)", minimum=1, maximum=10, step=0.5, value=3.5)
|
|
|
208 |
with gr.Row():
|
209 |
randomize_seed = gr.Checkbox(True, label="Random Seed")
|
210 |
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
|
|
|
211 |
generate_button = gr.Button("Generate", variant="primary")
|
|
|
|
|
212 |
with gr.Column(scale=2):
|
213 |
progress_bar = gr.Markdown(elem_id="progress", visible=False)
|
214 |
result = gr.Image(label="Generated Image", interactive=False, show_share_button=True)
|
215 |
with gr.Accordion("History", open=False):
|
216 |
history_gallery = gr.Gallery(label="History", columns=4, object_fit="contain", interactive=False)
|
|
|
|
|
217 |
def get_random_prompt():
|
218 |
return random.choice(prompt_values)
|
|
|
219 |
random_prompt_btn.click(fn=get_random_prompt, inputs=[], outputs=[prompt])
|
|
|
|
|
220 |
generation_event = gr.on(
|
221 |
triggers=[generate_button.click, prompt.submit],
|
222 |
fn=run_generation,
|
223 |
inputs=[prompt, enhance_prompt_checkbox, lora_scale, cfg_scale, steps, randomize_seed, seed, aspect_ratio, base_resolution],
|
224 |
outputs=[result, seed, progress_bar]
|
225 |
)
|
|
|
226 |
generation_event.then(fn=update_history, inputs=[result, history_gallery], outputs=history_gallery)
|
227 |
|
228 |
app.queue(max_size=20)
|