# streamlit_app.py import streamlit as st from transformers import pipeline # Caching the text classification models @st.cache_resource def load_pipeline(model_name): return pipeline("text-classification", model=model_name) # Initialize session state for conversation history, bot response, and selected model if 'conversation_history' not in st.session_state: st.session_state.conversation_history = "" if 'bot_response' not in st.session_state: st.session_state.bot_response = "" if 'selected_model' not in st.session_state: st.session_state.selected_model = "distilbert/distilbert-base-uncased-finetuned-sst-2-english" def classify_text(user_message): # Update the conversation history st.session_state.conversation_history += f"User: {user_message}\n" pipe = load_pipeline(st.session_state.selected_model) result = pipe(user_message)[0] # pipe returns a list of results st.session_state.conversation_history += f"Bot: {result['label']} (Score: {result['score']:.2f})\n" st.session_state.bot_response = result return result # Sidebar options st.sidebar.title("App Settings") # Model selection model_options = { "DistilBERT Sentiment Analysis": "distilbert/distilbert-base-uncased-finetuned-sst-2-english", "BERT Multilingual Sentiment Analysis": "nlptown/bert-base-multilingual-uncased-sentiment" } selected_model = st.sidebar.selectbox("Select model:", list(model_options.keys())) st.session_state.selected_model = model_options[selected_model] show_history = st.sidebar.checkbox("Show conversation history", value=True) character_limit = st.sidebar.slider("Set character limit for input:", min_value=50, max_value=500, value=200) # Session reset button if st.sidebar.button("Reset Conversation"): st.session_state.conversation_history = "" st.session_state.bot_response = "" st.sidebar.success("Conversation history cleared.") # Streamlit app layout st.title("🧠 Text Classification Bot") st.subheader("Classify your text with a sentiment analysis model!") # Input field with character limit user_message = st.text_input(f"Enter your message (max {character_limit} characters):", max_chars=character_limit) # Send button to generate classification if st.button("Classify"): if user_message: # Get classification from the selected model classification_result = classify_text(user_message) # Display bot's response in a dedicated area st.markdown("### Classification Result") st.success(f"**Label:** {classification_result['label']}\n**Score:** {classification_result['score']:.2f}") if show_history: # Display conversation history in a text area for better scrolling st.write("### Conversation History") st.text_area("Conversation", value=st.session_state.conversation_history, height=250, max_chars=None) else: # Show a warning if no message is provided st.warning("Please enter a message before classifying.") # About section st.markdown("---") st.markdown("### About this App") st.info("This app uses pre-trained models for sentiment analysis. You can select a model and enter text to see its classification and sentiment score.") st.sidebar.markdown("---") st.sidebar.write("Created by [Your Name](https://github.com/yourprofile)")