Spaces:
No application file
No application file
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from flask import Flask, request, jsonify
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
+
import torch
|
4 |
+
|
5 |
+
app = Flask(__name__)
|
6 |
+
|
7 |
+
# Используем квантованную модель для экономии памяти
|
8 |
+
model_name = "Qwen/Qwen-1_8B-Chat-Int4"
|
9 |
+
|
10 |
+
# Загружаем модель и токенизатор
|
11 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
12 |
+
model = AutoModelForCausalLM.from_pretrained(
|
13 |
+
model_name,
|
14 |
+
device_map="auto",
|
15 |
+
torch_dtype=torch.float16,
|
16 |
+
trust_remote_code=True
|
17 |
+
)
|
18 |
+
|
19 |
+
@app.route("/v1/chat/completions", methods=["POST"])
|
20 |
+
def chat():
|
21 |
+
data = request.json
|
22 |
+
prompt = data.get("messages", "")[-1]["content"]
|
23 |
+
|
24 |
+
# Генерируем ответ
|
25 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
26 |
+
outputs = model.generate(**inputs, max_new_tokens=200)
|
27 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
28 |
+
|
29 |
+
# Возвращаем ответ в формате OpenAI API
|
30 |
+
return jsonify({
|
31 |
+
"choices": [
|
32 |
+
{
|
33 |
+
"message": {
|
34 |
+
"content": response
|
35 |
+
}
|
36 |
+
}
|
37 |
+
]
|
38 |
+
})
|
39 |
+
|
40 |
+
if __name__ == "__main__":
|
41 |
+
app.run()
|