File size: 8,622 Bytes
a721802
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import torch
import numpy as np
import sys
import os
from transformers import RobertaTokenizer, AutoModelForTokenClassification, RobertaForSequenceClassification
import spacy
import tokenizations
from numpy import asarray
from numpy import savetxt, loadtxt
import numpy as np
import json
from copy import deepcopy
from sty import fg, bg, ef, rs, RgbBg, Style
import re
from tqdm import tqdm
import gradio as gr

nlp = spacy.load("en_core_web_sm")
tokenizer = RobertaTokenizer.from_pretrained("roberta-base")  
clause_model = AutoModelForTokenClassification.from_pretrained("C:\\Users\\pixin\\Desktop\\Reddit ML\\Trained Models\\clause_model_512", num_labels=3)
classification_model = RobertaForSequenceClassification.from_pretrained("C:\\Users\\pixin\\Desktop\\Reddit ML\\Trained Models\\classfication_model", num_labels=18)


labels2attrs = {
    "##BOUNDED EVENT (SPECIFIC)": ("specific", "dynamic", "episodic"),
    "##BOUNDED EVENT (GENERIC)": ("generic", "dynamic", "episodic"),
    "##UNBOUNDED EVENT (SPECIFIC)": ("specific", "dynamic", "static"),  # This should be (static, or habitual)
    "##UNBOUNDED EVENT (GENERIC)": ("generic", "dynamic", "static"),
    "##BASIC STATE": ("specific", "stative", "static"),
    "##COERCED STATE (SPECIFIC)": ("specific", "dynamic", "static"),
    "##COERCED STATE (GENERIC)": ("generic", "dynamic", "static"),
    "##PERFECT COERCED STATE (SPECIFIC)": ("specific", "dynamic", "episodic"),
    "##PERFECT COERCED STATE (GENERIC)": ("generic", "dynamic", "episodic"),
    "##GENERIC SENTENCE (DYNAMIC)": ("generic", "dynamic", "habitual"),   # habitual count as unbounded
    "##GENERIC SENTENCE (STATIC)": ("generic", "stative", "static"),  # The car is red now (static)
    "##GENERIC SENTENCE (HABITUAL)": ("generic", "stative", "habitual"),   # I go to the gym regularly (habitual)
    "##GENERALIZING SENTENCE (DYNAMIC)": ("specific", "dynamic", "habitual"),
    "##GENERALIZING SENTENCE (STATIVE)": ("specific", "stative", "habitual"),
    "##QUESTION": ("NA", "NA", "NA"),
    "##IMPERATIVE": ("NA", "NA", "NA"),
    "##NONSENSE": ("NA", "NA", "NA"),
    "##OTHER": ("NA", "NA", "NA"),
}

label2index = {l:i for l,i in zip(labels2attrs.keys(), np.arange(len(labels2attrs)))}
index2label = {i:l for l,i in label2index.items()}

def auto_split(text):
    doc = nlp(text)
    current_len = 0
    snippets = []
    current_snippet = ""
    for sent in doc.sents:
        text = sent.text
        words = text.split()
        if current_len + len(words) > 200:
            snippets.append(current_snippet)
            current_snippet = text
            current_len = len(words)
        else:
            current_snippet += " " + text
            current_len += len(words)
    snippets.append(current_snippet) # the leftover part. 
    return snippets


def majority_vote(array):
    unique, counts = np.unique(np.array(array), return_counts=True)
    return unique[np.argmax(counts)]

def get_pred_clause_labels(text, words):
    model_inputs = tokenizer(text, padding='max_length', max_length=512, truncation=True, return_tensors='pt')
    roberta_tokens = (tokenizer.convert_ids_to_tokens(model_inputs['input_ids'][0]))
    a2b, b2a = tokenizations.get_alignments(words, roberta_tokens)
    logits = clause_model(**model_inputs)[0]
    tagging = logits.argmax(-1)[0].numpy()
    pred_labels = []
    for aligment in a2b: # spacy token index to roberta_token index
        if len(aligment) == 0: pred_labels.append(1)
        elif len(aligment) == 1: pred_labels.append(tagging[aligment[0]])
        else:
            pred_labels.append(majority_vote([tagging[a] for a in aligment]))
    assert len(pred_labels) == len(words)
    return pred_labels

def seg_clause(text):
    words = text.strip().split()
    labels = get_pred_clause_labels(text, words)
    segmented_clauses = []
    prev_label = 2
    current_clause = None
    for cur_token, cur_label in zip(words, labels):
        if prev_label == 2: current_clause = []
        if current_clause != None: current_clause.append(cur_token)
            
        if cur_label == 2:
            if prev_label in [0, 1]:
                segmented_clauses.append(deepcopy(current_clause)) ## 0 1 1 1 1 2 0 1 1 
                current_clause = None
        prev_label = cur_label

    if current_clause is not None and len(current_clause) != 0: # append leftover
        segmented_clauses.append(deepcopy(current_clause))
    return [" ".join(clause) for clause in segmented_clauses if clause is not None]

def pretty_print_segmented_clause(segmented_clauses):
    np.random.seed(42)
    bg.orange = Style(RgbBg(255, 150, 50))
    bg.purple = Style(RgbBg(180, 130, 225))
    colors = [bg.red, bg.orange, bg.yellow, bg.green, bg.blue, bg.purple]
    prev_color = 0
    to_print = []
    for cl in segmented_clauses:
        color_choice = np.random.choice(np.delete(np.arange(len(colors)), prev_color))
        prev_color = color_choice
        colored_cl = colors[color_choice] + cl + bg.rs
        to_print.append(colored_cl)
    print(*to_print, sep=" ")
    

def get_pred_classification_labels(clauses, batch_size=32):
    clause2labels = []
    for i in range(0, len(clauses) + 1, batch_size):
        batch_examples = clauses[i : i + batch_size]
        model_inputs = tokenizer(batch_examples, padding='max_length', max_length=128, truncation=True, return_tensors='pt')
        logits = classification_model(**model_inputs)[0]
        pred_labels = logits.argmax(-1).numpy()
        pred_labels = [index2label[l] for l in pred_labels]
        
        clause2labels.extend([(s, str(l),) for s,l in zip(batch_examples, pred_labels)])
    return clause2labels



def run_pipeline(text):
    snippets = auto_split(text)
    all_clauses = []
    for s in snippets:
        segmented_clauses = seg_clause(s)
        all_clauses.extend(segmented_clauses)
    clause2labels = get_pred_classification_labels(all_clauses)
    output_clauses = [(c, str(i + 1))  for i, c in enumerate(all_clauses)]
    return output_clauses, clause2labels

# with open("pipeline_outputs.jsonl", "w") as fw:
#     with open("all_text.txt", "r") as f:
#         lines = f.readlines()
#         print(f"Totally detected {len(lines)} documents.")
#         for text in tqdm(lines):
#             snippets = auto_split(text)
#             all_clauses = []
#             for s in snippets:
#                 segmented_clauses = seg_clause(s)
#                 all_clauses.extend(segmented_clauses)
#             # pretty_print_segmented_clause(segmented_clauses)
            
#             clause2labels = get_pred_classification_labels(all_clauses)
#             json.dump(clause2labels, fw)
#             fw.write("\n")

color_panel_1 =  ["red", "green",  "yellow", "DodgerBlue", "orange", "DarkSalmon", "pink", "cyan", "gold", "aqua", "violet"]
index_colormap = {str(i) : color_panel_1[i % len(color_panel_1)] for i in np.arange(1, 100000)}
color_panel_2 = ["Violet", "DodgerBlue", "Wheat", "OliveDrab", "DarkKhaki", "DarkSalmon", "Orange", "Gold", "Aqua", "Tomato", "Gray"]
str_attrs = [str(v) for v in set(labels2attrs.values())]
print(str_attrs, len(str_attrs), len(color_panel_2))
assert len(str_attrs) == len(color_panel_2)
attr_colormap = {a:c for a, c in zip(str_attrs, color_panel_2)}
# attr_colormap = {
#     ("specific", "dynamic", "episodic"): 
#     ("generic", "dynamic", "episodic"): 
#     ("specific", "dynamic", "static"): 
#     ("generic", "dynamic", "static"): 
#     ("specific", "stative", "static"): 
#     ("specific", "dynamic", "static"): 
#     ("generic", "dynamic", "static"): 
#     ("specific", "dynamic", "episodic"): 
#     ("generic", "dynamic", "episodic"): 
#     ("generic", "dynamic", "habitual"): 
#     ("generic", "stative", "static"): 
#     ("generic", "stative", "habitual"): 
#     ("specific", "dynamic", "habitual"): 
#     ("specific", "stative", "habitual"): 
#     ("NA", "NA", "NA"): 
# }


demo = gr.Interface(
    fn=run_pipeline,
    inputs=["text"],
    outputs= [
        gr.HighlightedText(
            label="Clause Segmentation",
            show_label=True,
            combine_adjacent=False,
        ).style(color_map = index_colormap),

        gr.HighlightedText(
            label="Attribute Classification",
            show_label=True,
            show_legend=True,
            combine_adjacent=False,
        ).style(color_map=attr_colormap),
    ]
)

demo.launch(share=True)