Spaces:
Running
Running
File size: 58,994 Bytes
2ae5792 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 |
import os
import gradio as gr
from huggingface_hub import InferenceClient
import torch
import re
import warnings
import time
import json
import asyncio # Import asyncio for asynchronous operations
# Removed specific transformers imports that might not be strictly necessary for InferenceClient
# from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig, BitsAndBytesConfig
from sentence_transformers import SentenceTransformer, util, CrossEncoder
import gspread
# Removed google.auth.default as service account from dict is used
# from google.auth import default
from tqdm import tqdm
from ddgs import DDGS
import spacy
from datetime import date, timedelta, datetime
from dateutil.relativedelta import relativedelta # Corrected import
import traceback
import base64
import dateparser
from dateparser.search import search_dates
import pytz
# Removed userdata as secrets are accessed via environment variables in Spaces
# from google.colab import userdata
import os # Ensure os is imported for environment variables
from datasets import Dataset, DatasetDict, concatenate_datasets, load_dataset
from huggingface_hub import HfApi, login # Import login for initial auth
import faiss
import numpy as np
import pickle
# --- SQL Logging Imports and Connection Placeholder (Removed for HF Space) ---
# Removed SQL related code as per user's request to use HF Datasets
# ---
# Define the dataset name (replace with your actual Hugging Face username and desired dataset name)
# Ensure this dataset is set to private on the Hugging Face Hub
dataset_name = "Futuresony/Logs_Conversation" # REPLACE WITH YOUR ACTUAL DATASET NAME
# Global variable to store the dataset
conversation_dataset = None
# Initialize HfApi for pushing - Use token from environment variable
# No need to re-initialize HfApi with token here as login handles it
# hf_api = HfApi(token=HF_TOKEN)
# Suppress warnings
warnings.filterwarnings("ignore", category=UserWarning)
# Define global variables and load secrets from environment variables for HF Spaces
# HF_TOKEN is now accessed via os.environ or handled by huggingface_hub login
HF_TOKEN = os.getenv("HF_TOKEN") # Access HF_TOKEN from environment variable
# Add a print statement to check if HF_TOKEN is loaded
print(f"HF_TOKEN loaded: {'Yes' if HF_TOKEN else 'No'}")
SHEET_ID = "19ipxC2vHYhpXCefpxpIkpeYdI43a1Ku2kYwecgUULIw"
# GOOGLE_BASE64_CREDENTIALS is now accessed via os.environ
GOOGLE_BASE64_CREDENTIALS = os.getenv("GOOGLE_BASE64_CREDENTIALS")
# SECRET_API_KEY is now accessed via os.environ
SECRET_API_KEY = os.getenv("APP_API_KEY")
# Add a print statement to check if SECRET_API_KEY is loaded
print(f"SECRET_API_KEY loaded: {'Yes' if SECRET_API_KEY else 'No'}")
if not SECRET_API_KEY:
print("Warning: APP_API_KEY secret not set. API key validation will fail.")
elif not SECRET_API_KEY.startswith("fs_"):
print("Warning: APP_API_KEY secret does not start with 'fs_'. Please check your secret.")
# Authenticate with Hugging Face Hub using the token from environment variable
try:
print("Attempting to authenticate with Hugging Face Hub...")
# login() automatically looks for HF_TOKEN in environment variables
login(add_to_git_credential=True)
print("Hugging Face Hub authentication successful.")
except Exception as e:
print(f"Hugging Face Hub authentication failed: {e}")
print(traceback.format_exc())
# Initialize InferenceClient for primary model (LLaMA-3.3-70B-Instruct)
primary_client = InferenceClient("meta-llama/Llama-3.3-70B-Instruct", token=HF_TOKEN)
print("Primary model (LLaMA-3.3-70B-Instruct) client initialized.")
# Initialize InferenceClient for fallback model (Gemma-2-9b-it)
fallback_client = InferenceClient("google/gemma-2-9b-it", token=HF_TOKEN)
print("Fallback model (Gemma-2-9b-it) client initialized.")
# Load spacy model for sentence splitting
nlp = None
try:
nlp = spacy.load("en_core_web_sm")
print("SpaCy model 'en_core_web_sm' loaded.")
except OSError:
print("SpaCy model 'en_core_web_sm' not found. Downloading...")
try:
import subprocess
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"], check=True)
nlp = spacy.load("en_core_web_sm")
print("SpaCy model 'en_core_web_sm' downloaded and loaded.")
except Exception as e:
print(f"Failed to download or load SpaCy model: {e}")
# Load SentenceTransformer for RAG/business info retrieval and semantic detection
embedder = None
try:
print("Attempting to load Sentence Transformer (sentence-transformers/paraphrase-MiniLM-L6-v2)...")
embedder = SentenceTransformer("sentence-transformers/paraphrase-MiniLM-L6-v2")
print("Sentence Transformer loaded.")
except Exception as e:
print(f"Error loading Sentence Transformer: {e}")
# Load a Cross-Encoder model for re-ranking retrieved documents
reranker = None
try:
print("Attempting to load Cross-Encoder Reranker (cross-encoder/ms-marco-MiniLM-L6-v2)...")
reranker = CrossEncoder('cross-encoder/ms-marco-MiniLM-L6-v2')
print("Cross-Encoder Reranker loaded.")
except Exception as e:
print(f"Error loading Cross-Encoder Reranker: {e}")
print("Please ensure the model identifier 'cross-encoder/ms-marco-MiniLM-L6-v2' is correct and accessible on Hugging Face Hub.")
print(traceback.format_exc())
reranker = None
# Google Sheets Authentication
gc = None
def authenticate_google_sheets():
"""Authenticates with Google Sheets using base64 encoded credentials."""
global gc
print("Authenticating Google Account...")
if not GOOGLE_BASE64_CREDENTIALS:
print("Error: GOOGLE_BASE64_CREDENTIALS secret not found.")
return False
try:
credentials_json = base64.b64decode(GOOGLE_BASE64_CREDENTIALS).decode('utf-8')
credentials = json.loads(credentials_json)
gc = gspread.service_account_from_dict(credentials)
print("Google Sheets authentication successful via service account.")
return True
except Exception as e:
print(f"Google Sheets authentication failed: {e}")
print(traceback.format_exc())
print("Please ensure your GOOGLE_BASE64_CREDENTIALS secret is correctly set and contains valid service account credentials.")
return False
# Google Sheets Data Loading and Embedding for RAG
data = []
descriptions_for_embedding = []
embeddings = torch.tensor([]) # This will store embeddings for RAG data
business_info_available = False
def load_business_info():
"""Loads business information from Google Sheet and creates embeddings."""
global data, descriptions_for_embedding, embeddings, business_info_available
business_info_available = False
if gc is None:
print("Skipping Google Sheet loading: Google Sheets client not authenticated.")
return
if not SHEET_ID:
print("Error: SHEET_ID not set.")
return
try:
sheet = gc.open_by_key(SHEET_ID).sheet1
print(f"Successfully opened Google Sheet with ID: {SHEET_ID}")
data_records = sheet.get_all_records()
if not data_records:
print(f"Warning: No data records found in Google Sheet with ID: {SHEET_ID}")
data = []
descriptions_for_embedding = []
else:
filtered_data = [row for row in data_records if row.get('Service') and row.get('Description')]
if not filtered_data:
print("Warning: Filtered data is empty after checking for 'Service' and 'Description'.")
data = []
descriptions_for_embedding = []
else:
data = filtered_data
descriptions_for_embedding = [f"Service: {row['Service']}. Description: {row['Description']}" for row in data]
if descriptions_for_embedding and embedder is not None:
print("Encoding descriptions for RAG...")
try:
embeddings = embedder.encode(descriptions_for_embedding, convert_to_tensor=True)
print("Encoding complete. RAG embeddings created.")
business_info_available = True
except Exception as e:
print(f"Error during description encoding for RAG: {e}")
embeddings = torch.tensor([])
business_info_available = False
else:
print("Skipping encoding descriptions for RAG: No descriptions found or embedder not available.")
embeddings = torch.tensor([])
business_info_available = False
print(f"Loaded {len(descriptions_for_embedding)} entries from Google Sheet for embedding/RAG.")
if not business_info_available:
print("Business information retrieval (RAG) is NOT available.")
else:
print("Business information retrieval (RAG) is available.")
except gspread.exceptions.SpreadsheetNotFound:
print(f"Error: Google Sheet with ID '{SHEET_ID}' not found.")
print("Please check the SHEET_ID and ensure your authenticated Google Account has access to this sheet.")
business_info_available = False
except Exception as e:
print(f"An error occurred while accessing the Google Sheet: {e}")
print(traceback.format_exc())
business_info_available = False
# Business Info Retrieval (RAG) function - Reusing the existing one
def retrieve_business_info(query: str, top_n: int = 3) -> list:
"""
Retrieves relevant business information from loaded data based on a query.
"""
global data, embeddings
if not business_info_available or embedder is None or not descriptions_for_embedding or not data or embeddings.numel() == 0:
print("Business information retrieval is not available or RAG data is empty.")
return []
try:
query_embedding = embedder.encode(query, convert_to_tensor=True)
# Ensure both tensors are on the same device for cosine similarity calculation
if query_embedding.device != embeddings.device:
query_embedding = query_embedding.to(embeddings.device)
cosine_scores = util.cos_sim(query_embedding, embeddings)[0]
top_results_indices = torch.topk(cosine_scores, k=min(top_n, len(data)))[1].tolist()
top_results = [data[i] for i in top_results_indices]
if reranker is not None and top_results:
print("Re-ranking top results...")
rerank_pairs = [(query, descriptions_for_embedding[i]) for i in top_results_indices]
rerank_scores = reranker.predict(rerank_pairs)
reranked_indices = sorted(range(len(rerank_scores)), key=lambda i: rerank_scores[i], reverse=True)
reranked_results = [top_results[i] for i in reranked_indices]
print("Re-ranking complete.")
return reranked_results
else:
return top_results
except Exception as e:
print(f"Error during business information retrieval: {e}")
print(traceback.format_exc())
return []
# Function to perform DuckDuckGo Search and return results with URLs
async def perform_duckduckgo_search(query: str, max_results: int = 5):
"""
Performs a search using DuckDuckGo asynchronously and returns a list of dictionaries.
"""
print(f"Executing Tool: perform_duckduckgo_search with query='{query}')")
search_results_list = []
try:
await asyncio.sleep(1) # Simulate async operation
with DDGS() as ddgs:
search_query = query.strip()
if not search_query or len(search_query.split()) < 2:
print(f"Skipping search for short query: '{search_query}'")
return []
print(f"Sending search query to DuckDuckGo: '{search_query}'")
# DDGS text method is not inherently async, but we can run it in a thread
# to make the chat function awaitable.
loop = asyncio.get_event_loop()
results_generator = await loop.run_in_executor(None, lambda: list(ddgs.text(search_query, max_results=max_results)))
results_found = False
for r in results_generator:
search_results_list.append(r)
results_found = True
print(f"Raw results from DuckDuckGo: {search_results_list}")
if not results_found and max_results > 0:
print(f"DuckDuckGo search for '{search_query}' returned no results.")
elif results_found:
print(f"DuckDuckGo search for '{search_query}' completed. Found {len(search_results_list)} results.")
except Exception as e:
print(f"Error during Duckduckgo search for '{search_query if 'search_query' in locals() else query}': {e}")
print(traceback.format_exc())
return f"An error occurred during web search: {e}" # Return error message on failure
return search_results_list
# Define the new semantic date/time detection and calculation function using dateparser
async def perform_date_calculation(query: str) -> str or None:
"""
Analyzes query for date/time information using dateparser asynchronously.
"""
print(f"Executing Tool: perform_date_calculation with query='{query}') using dateparser.search_dates")
try:
await asyncio.sleep(0.1) # Simulate async operation
eafrica_tz = pytz.timezone('Africa/Dar_es_Salaam')
now = datetime.now(eafrica_tz)
except pytz.UnknownTimeZoneError:
print("Error: Unknown timezone 'Africa/Dar_es_Salaam'. Using default system time.")
now = datetime.now()
try:
# dateparser.search_dates is not inherently async, run in thread
loop = asyncio.get_event_loop()
found = await loop.run_in_executor(None, lambda: search_dates(
query,
settings={
"PREFER_DATES_FROM": "future",
"RELATIVE_BASE": now
},
languages=['sw', 'en']
))
if not found:
print("dateparser.search_dates could not parse any date/time.")
return None
text_snippet, parsed = found[0]
print(f"dateparser.search_dates found: text='{text_snippet}', parsed='{parsed}'")
is_swahili = any(swahili_phrase in query.lower() for swahili_phrase in ['tarehe', 'siku', 'saa', 'muda', 'leo', 'kesho', 'jana', 'ngapi', 'gani', 'mwezi', 'mwaka', 'habari', 'mambo', 'shikamoo', 'karibu', 'asante'])
if is_swahili:
query_lower = query.lower().strip()
if query_lower in ['habari', 'mambo', 'habari gani']:
return "Nzuri! Habari zako?"
elif query_lower in ['shikamoo']:
return "Marahaba!"
elif query_lower in ['asante']:
return "Karibu!"
elif query_lower in ['karibu']:
return "Asante!"
if now.tzinfo is not None and parsed.tzinfo is None:
parsed = now.tzinfo.localize(parsed)
elif now.tzinfo is None and parsed.tzinfo is not None:
parsed = parsed.replace(tzinfo=None)
if parsed.date() == now.date():
if abs((parsed - now).total_seconds()) < 60 or parsed.time() == datetime.min.time():
print("Query parsed to today's date and time is close to 'now' or midnight, returning current time/date.")
if is_swahili:
return f"Kwa saa za Afrika Mashariki (Tanzania), tarehe ya leo ni {now.strftime('%A, %d %B %Y')} na saa ni {now.strftime('%H:%M:%S')}."
else:
return f"In East Africa (Tanzania), the current date is {now.strftime('%A, %d %B %Y')} and the time is {now.strftime('%H:%M:%S')}."
else:
print(f"Query parsed to a specific time today: {parsed.strftime('%H:%M:%S')}")
if is_swahili:
return f"Hiyo inafanyika leo, {parsed.strftime('%A, %d %B %Y')}, saa {parsed.strftime('%H:%M:%S')} saa za Afrika Mashariki."
else:
return f"That falls on today, {parsed.strftime('%A, %d %B %Y')}, at {parsed.strftime('%H:%M:%S')} East Africa Time."
else:
print(f"Query parsed to a specific date: {parsed.strftime('%A, %d %B %Y')} at {parsed.strftime('%H:%M:%S')}")
time_str = parsed.strftime('%H:%M:%S')
date_str = parsed.strftime('%A, %d %B %Y')
if parsed.tzinfo:
tz_name = parsed.tzinfo.tzname(parsed) or 'UTC'
if is_swahili:
return f"Hiyo inafanyika tarehe {date_str} saa {time_str} {tz_name}."
else:
return f"That falls on {date_str} at {time_str} {tz_name}."
else:
if is_swahili:
return f"Hiyo inafanyika tarehe {date_str} saa {time_str}."
else:
return f"That falls on {date_str} at {time_str}."
except Exception as e:
print(f"Error during dateparser.search_dates execution: {e}")
print(traceback.format_exc())
return f"An error occurred while parsing date/time: {e}" # Return error message on failure
# Function to determine if a query requires a tool or can be answered directly
# Modified to include complexity check for routing to primary vs fallback
def determine_tool_usage(query: str) -> tuple[str, str]:
"""
Analyzes the query to determine if a specific tool is needed and its complexity.
Returns a tuple: (tool_name, complexity_level)
Complexity levels: 'simple' (fallback), 'complex' (primary)
"""
query_lower = query.lower()
swahili_conversational_phrases = ['habari', 'mambo', 'shikamoo', 'karibu', 'asante', 'habari gani']
if any(swahili_phrase in query_lower for swahili_phrase in swahili_conversational_phrases):
print(f"Detected a Swahili conversational phrase: '{query}'. Using 'date_calculation' tool and 'simple' complexity.")
return "date_calculation", "simple" # Simple conversational queries routed to fallback
# Check for business info retrieval first
if business_info_available:
# Use a simple LLM call to check if the query is business-related
messages_business_check = [{"role": "user", "content": f"Does the following query ask about a specific person, service, offering, or description that is likely to be found *only* within a specific business's internal knowledge base, and not general knowledge? For example, questions about 'Salum' or 'Jackson Kisanga' are likely business-related, while questions about 'the current president of the USA' or 'who won the Ballon d'Or' are general knowledge. Answer only 'yes' or 'no'. Query: {query}"}]
try:
business_check_response = primary_client.chat_completion( # Use primary client for this check
messages=messages_business_check,
max_tokens=10,
temperature=0.1
).choices[0].message.content.strip().lower()
if business_check_response == "yes":
print(f"Detected as specific business info query based on LLM check: '{query}'. Using 'business_info_retrieval' tool and 'simple' complexity.")
# Business info RAG is handled by the fallback model
return "business_info_retrieval", "simple"
else:
print(f"LLM check indicates not a specific business info query: '{query}')")
except Exception as e:
print(f"Error during LLM call for business info check for query '{query}': {e}")
print(traceback.format_exc())
print(f"Proceeding without business info check for query '{query}' due to error.")
# Check for date/time calculation
# We don't pre-calculate here, just check if the tool might be relevant
date_time_keywords = ['date', 'time', 'when', 'what day', 'what time', 'leo', 'kesho', 'jana', 'muda', 'saa', 'tarehe', 'siku']
if any(keyword in query_lower for keyword in date_time_keywords):
print(f"Detected date/time keywords in query: '{query}'. Suggesting 'date_calculation' tool.")
# We still need to determine complexity for the final generation
messages_complexity = [{"role": "user", "content": f"Is the following query simple or complex? A simple query is a basic question, a greeting, or a question that can be answered with a short, direct response. A complex query requires detailed understanding, multiple steps, or external information synthesis. Respond ONLY with 'simple' or 'complex'. Query: {query}"}]
try:
complexity_response = primary_client.chat_completion(
messages=messages_complexity,
max_tokens=10,
temperature=0.1
).choices[0].message.content.strip().lower()
print(f"Determined complexity for date/time query '{query}': '{complexity_response}'")
return "date_calculation", complexity_response # Use date_calculation tool, complexity from LLM
except Exception as e:
print(f"Error determining complexity for date/time query '{query}': {e}. Defaulting to 'simple'.")
return "date_calculation", "simple" # Default to simple on error
# Check if web search is needed for general knowledge or current info
messages_tool_determination_search = [{"role": "user", "content": f"Does the following query require searching the web for current or general knowledge information (e.g., news, facts, definitions, current events)? Respond ONLY with 'duckduckgo_search' or 'none'. Query: {query}"}]
try:
search_determination_response = primary_client.chat_completion( # Use primary client for this check
messages=messages_tool_determination_search,
max_tokens=20,
temperature=0.1,
top_p=0.9
).choices[0].message.content or ""
response_lower = search_determination_response.strip().lower()
if "duckduckgo_search" in response_lower:
print(f"Model-determined tool for '{query}': 'duckduckgo_search'. Using 'complex' complexity.")
# Web search queries are generally more complex and routed to primary
return "duckduckgo_search", "complex"
else:
print(f"Model-determined tool for '{query}': 'none' (for search).")
except Exception as e:
print(f"Error during LLM call for search tool determination for query '{query}': {e}")
print(traceback.format_exc())
print(f"Proceeding without search tool check for query '{query}' due to error.")
# If no specific tool is determined, route based on query complexity
messages_complexity = [{"role": "user", "content": f"Is the following query simple or complex? A simple query is a basic question, a greeting, or a question that can be answered with a short, direct response. A complex query requires detailed understanding, multiple steps, or external information synthesis. Respond ONLY with 'simple' or 'complex'. Query: {query}"}]
try:
complexity_response = primary_client.chat_completion( # Use primary client for complexity check
messages=messages_complexity,
max_tokens=10,
temperature=0.1
).choices[0].message.content.strip().lower()
if "complex" in complexity_response:
print(f"Determined query complexity for '{query}': 'complex'. Using 'none' tool.")
return "none", "complex" # No tool, complex query routed to primary
else:
print(f"Determined query complexity for '{query}': 'simple'. Using 'none' tool.")
return "none", "simple" # No tool, simple query routed to fallback
except Exception as e:
print(f"Error during LLM call for complexity determination for query '{query}': {e}")
print(traceback.format_exc())
print(f"Defaulting query '{query}' to 'complex' due to error.")
return "none", "complex" # Default to complex on error
# Function to summarize chat history
def summarize_chat_history(chat_history: list[dict]) -> str:
"""
Summarizes the provided chat history using the LLM.
Uses the primary client for summarization.
"""
print("\n--- Summarizing chat history ---")
if not chat_history:
print("Chat history is empty, no summarization needed.")
return ""
history_text = "\n".join([f"{msg['role']}: {msg['content']}" for msg in chat_history])
prompt_for_summary = f"""
Please provide a concise summary of the following conversation history.
Conversation History:
{history_text}
Summary:
"""
try:
messages_summary = [{"role": "user", "content": prompt_for_summary}]
summary_response = primary_client.chat_completion( # Use primary client
messages=messages_summary,
max_tokens=200, # Adjust based on desired summary length
temperature=0.3,
top_p=0.9
).choices[0].message.content or ""
print("Chat history summarization successful using primary client.")
return summary_response.strip()
except Exception as e:
print(f"Error during LLM call for chat history summarization (primary client): {e}")
print(traceback.format_exc())
return "Unable to summarize previous conversation."
# Function to generate text using the LLM, incorporating tool results if available
# Modified to use primary or fallback client based on complexity
def generate_text(prompt: str, tool_results: dict = None, chat_history: list[dict] = None, complexity_level: str = 'complex') -> str:
"""
Generates text using the configured LLM (primary or fallback), optionally incorporating tool results and chat history.
Implements conversation summarization and windowing for long histories.
"""
persona_instructions = """You are absa_ai, an AI developed on August 7, 2025, by the absa team. Your knowledge about business data comes from the company's internal Google Sheet.
You are a friendly and helpful chatbot. Respond to greetings appropriately (e.g., "Hello!", "Hi there!", "Habari!"). If the user uses Swahili greetings or simple conversational phrases, respond in Swahili. Otherwise, respond in English unless the query is clearly in Swahili. Handle conversational flow and ask follow-up questions when appropriate.
If the user asks a question about other companies or general knowledge, answer their question. However, subtly remind them that your primary expertise and purpose are related to Absa-specific information.
"""
messages = [{"role": "user", "content": persona_instructions}]
# --- Conversation Summarization and Windowing ---
SUMMARY_THRESHOLD = 10 # Summarize after 10 turns (5 user/assistant pairs)
HISTORY_WINDOW_SIZE = 4 # Keep the last 4 turns (2 user/assistant pairs)
if chat_history:
print(f"Current chat history length: {len(chat_history)}")
if len(chat_history) > SUMMARY_THRESHOLD:
print("Chat history exceeds threshold, summarizing older turns.")
history_to_summarize = chat_history[:-HISTORY_WINDOW_SIZE]
summary = summarize_chat_history(history_to_summarize) # summarize_chat_history uses primary client
if summary:
messages.append({"role": "assistant", "content": f"Summary of previous conversation: {summary}"})
print("Added summary to messages.")
recent_history = chat_history[-HISTORY_WINDOW_SIZE:]
print(f"Including last {len(recent_history)} turns from history.")
for message_dict in recent_history:
role = message_dict.get("role")
content = message_dict.get("content")
if role in ["user", "assistant"] and content is not None:
messages.append({"role": role, "content": content})
else:
print("Including full chat history in LLM prompt.")
for message_dict in chat_history:
role = message_dict.get("role")
content = message_dict.get("content")
if role in ["user", "assistant"] and content is not None:
messages.append({"role": role, "content": content})
current_user_content = prompt
if tool_results and any(tool_results.values()):
current_user_content += "\n\nTool Results:\n"
for question, results in tool_results.items():
if results is not None and results != "none": # Only include if results are not None or "none"
current_user_content += f"--- Results for: {question} ---\n"
if isinstance(results, list):
if not results: # Handle empty list case
current_user_content += "No results found.\n\n"
else:
for i, result in enumerate(results):
if isinstance(result, dict) and 'Service' in result and 'Description' in result:
current_user_content += f"Business Info {i+1}:\nService: {result.get('Service', 'N/A')}\nDescription: {result.get('Description', 'N/A')}\n\n"
elif isinstance(result, dict) and 'url' in result:
current_user_content += f"Search Result {i+1}:\nTitle: {result.get('title', 'N/A')}\nURL: {result.get('url', 'N/A')}\nSnippet: {result.get('body', 'N/A')}\n\n"
else:
current_user_content += f"{result}\n\n"
elif isinstance(results, dict):
if not results: # Handle empty dict case
current_user_content += "No results found.\n\n"
else:
for key, value in results.items():
current_user_content += f"{key}: {value}\n"
current_user_content += "\n"
else: # Handle string results (like date calculation or error messages)
current_user_content += f"{results}\n\n"
current_user_content += "Based on the provided tool results and the conversation history, answer the user's latest query. If a question was answered by a tool, use the tool's result directly in your response. If a tool returned an error or no results, acknowledge that and try to answer based on your general knowledge or other tool results. Maintain the language of the original query if possible, especially for simple greetings or direct questions answered by tools."
print("Added tool results and instruction to final prompt.")
else:
current_user_content += "Based on the conversation history, answer the user's latest query."
print("No tool results to add to final prompt, relying on conversation history.")
messages.append({"role": "user", "content": current_user_content})
generation_config = {
"temperature": 0.7,
"max_new_tokens": 500,
"top_p": 0.95,
"top_k": 50,
"do_sample": True,
}
try:
if complexity_level == 'complex':
print("Using primary client for generation.")
response = primary_client.chat_completion(
messages=messages,
max_tokens=generation_config.get("max_new_tokens", 512),
temperature=generation_config.get("temperature", 0.7),
top_p=generation_config.get("top_p", 0.95)
).choices[0].message.content or ""
print("LLM generation successful using primary client.")
else: # complexity_level == 'simple' or fallback needed
print("Using fallback client for generation.")
# Use fallback_client for chat completion with Gemma
response = fallback_client.chat_completion(
messages=messages,
max_tokens=generation_config.get("max_new_tokens", 512),
temperature=generation_config.get("temperature", 0.7),
top_p=generation_config.get("top_p", 0.95)
).choices[0].message.content or ""
print("LLM generation successful using fallback client.")
return response.strip()
except Exception as e:
print(f"Error during final LLM generation (primary or fallback): {e}")
print(traceback.format_exc())
return "An error occurred while generating the final response."
# Function to log conversation data to the Hugging Face Dataset and push
def log_conversation(user_query: str, model_response: str, tool_details: dict = None, user_id: str = None):
"""
Logs conversation data (query, response, timestamp, optional details) to the Hugging Face Dataset
and pushes the changes to the Hub.
"""
global conversation_dataset # Access the global dataset variable
global dataset_name # Access the dataset name
print("\n--- Attempting to log conversation to Hugging Face Dataset ---")
if conversation_dataset is None:
print("Warning: Hugging Face dataset not loaded or created. Skipping conversation logging.")
return
try:
timestamp = datetime.now().isoformat()
# Ensure tool_details is a JSON string or None
tool_details_json = json.dumps(tool_details) if tool_details is not None else None
# Handle potential None values for user_id
user_id_val = user_id if user_id is not None else "anonymous"
# Create a dictionary for the new log entry
new_log_entry = {
'timestamp': timestamp,
'user_id': user_id_val,
'user_query': user_query,
'model_response': model_response,
'tool_details': tool_details_json
}
# Append the new log entry to the 'train' split of the dataset
new_row_dataset = Dataset.from_dict({key: [value] for key, value in new_log_entry.items()})
# Check if the 'train' split exists before concatenating
if 'train' in conversation_dataset:
conversation_dataset['train'] = concatenate_datasets([conversation_dataset['train'], new_row_dataset])
else:
# If 'train' doesn't exist (e.g., first log entry), create it
# Need to define the schema here as well if creating from scratch
log_schema = {
'timestamp': 'string',
'user_id': 'string',
'user_query': 'string',
'model_response': 'string',
'tool_details': 'string'
}
conversation_dataset = DatasetDict({'train': new_dataset.cast(log_schema)}) # Use new_dataset with schema
print("Conversation data successfully added to the dataset object.")
# --- Pushing to the Hugging Face Hub ---
print(f"Attempting to push dataset to {dataset_name}...")
# Use the push_to_hub method of the DatasetDict
# Use commit_message for clarity
conversation_dataset.push_to_hub(dataset_name, token=HF_TOKEN, commit_message=f"Add conversation log: {timestamp}")
print(f"Successfully pushed dataset to {dataset_name}.")
except Exception as e:
print(f"An unexpected error occurred during Hugging Face Dataset logging and pushing: {e}")
print(traceback.format_exc())
# Need to import concatenate_datasets
from datasets import concatenate_datasets
from huggingface_hub import HfApi # Ensure HfApi is imported
# --- Caching Implementation ---
# Define the path for the FAISS index file
FAISS_INDEX_FILE = "cache.index"
# Define the path for the metadata file (query text, response, timestamp)
CACHE_METADATA_FILE = "cache_metadata.pkl"
# Global variables for FAISS index and metadata
faiss_index = None
cache_metadata = {}
# Dimension of the embeddings (should match your embedder model output dimension)
# For 'sentence-transformers/paraphrase-MiniLM-L6-v2', the dimension is 384
EMBEDDING_DIM = 384
CACHE_SIMILARITY_THRESHOLD = 0.9 # Cosine similarity threshold for cache hit
CACHE_EXPIRATION_DAYS = 7 # Cache entries expire after 7 days
def initialize_cache():
"""Initializes or loads the FAISS index and cache metadata."""
global faiss_index, cache_metadata
print("\n--- Initializing Cache ---")
if os.path.exists(FAISS_INDEX_FILE) and os.path.exists(CACHE_METADATA_FILE):
print("Loading existing cache...")
try:
faiss_index = faiss.read_index(FAISS_INDEX_FILE)
with open(CACHE_METADATA_FILE, 'rb') as f:
cache_metadata = pickle.load(f)
print(f"Cache loaded successfully. Current cache size: {faiss_index.ntotal}")
# Clean up expired entries on load
cleanup_expired_cache_entries()
except Exception as e:
print(f"Error loading cache files: {e}. Initializing new cache.")
print(traceback.format_exc())
faiss_index = faiss.IndexFlatL2(EMBEDDING_DIM) # Using L2 distance
cache_metadata = {}
save_cache() # Save empty cache
else:
print("No existing cache found. Initializing new cache.")
faiss_index = faiss.IndexFlatL2(EMBEDDING_DIM) # Using L2 distance
cache_metadata = {}
save_cache() # Save empty cache
def save_cache():
"""Saves the FAISS index and cache metadata to files."""
global faiss_index, cache_metadata
if faiss_index is None:
print("Warning: FAISS index not initialized. Cannot save cache.")
return
print("Saving cache...")
try:
faiss.write_index(faiss_index, FAISS_INDEX_FILE)
with open(CACHE_METADATA_FILE, 'wb') as f:
pickle.dump(cache_metadata, f)
print("Cache saved successfully.")
except Exception as e:
print(f"Error saving cache files: {e}")
print(traceback.format_exc())
def get_query_embedding(query: str):
"""Generates an embedding for the given query."""
if embedder is None:
print("Warning: Embedder not available. Cannot generate query embedding for caching.")
return None
try:
return embedder.encode(query, convert_to_tensor=False) # Return numpy array for FAISS
except Exception as e:
print(f"Error generating embedding for query '{query}': {e}")
print(traceback.format_exc())
return None
def add_to_cache(query: str, response: str):
"""Adds the query, response, and timestamp to the cache."""
global faiss_index, cache_metadata
if embedder is None or faiss_index is None:
print("Warning: Embedder or FAISS index not available. Cannot add query to cache.")
return
try:
query_embedding = get_query_embedding(query)
if query_embedding is None:
return
# Add the embedding to the FAISS index
faiss_index.add(np.array([query_embedding])) # Add expects a numpy array of shape (n, dim)
# Store metadata (query, response, timestamp) keyed by the FAISS index ID
# The last added embedding gets the index faiss_index.ntotal - 1
cache_id = faiss_index.ntotal - 1
now = datetime.now()
cache_metadata[cache_id] = {
'query': query, # Store original query for debugging/verification
'response': response,
'timestamp': now,
'count': 1 # Initialize count
}
print(f"Added query and response to cache with ID {cache_id}.")
save_cache() # Save cache after adding
print(f"Current cache size: {faiss_index.ntotal}")
except Exception as e:
print(f"Error adding query to cache: {e}")
print(traceback.format_exc())
def check_cache(query: str):
"""Checks the cache for a similar query and returns the cached response if found and not expired."""
global faiss_index, cache_metadata
if faiss_index is None or embedder is None or faiss_index.ntotal == 0:
print("Cache is empty or not available. Skipping cache check.")
return None
try:
query_embedding = get_query_embedding(query)
if query_embedding is None:
return None
# Search the FAISS index for similar embeddings
# D is distances, I is indices of the nearest neighbors
D, I = faiss_index.search(np.array([query_embedding]), 1) # Search for the 1 nearest neighbor
if I[0][0] != -1 and D[0][0] <= (1 - CACHE_SIMILARITY_THRESHOLD): # Check if a neighbor was found and distance is within threshold
cached_id = I[0][0]
print(f"Found potential cache hit with ID {cached_id} and distance {D[0][0]:.4f}.")
if cached_id in cache_metadata:
cached_data = cache_metadata[cached_id]
now = datetime.now()
# Check for expiration
if (now - cached_data['timestamp']).days <= CACHE_EXPIRATION_DAYS:
print(f"Cache hit! Returning cached response for query: '{query}'")
# Update timestamp and count on cache hit
cache_metadata[cached_id]['timestamp'] = now
cache_metadata[cached_id]['count'] += 1
save_cache() # Save cache after updating metadata
return cached_data['response']
else:
print(f"Cache entry with ID {cached_id} found but expired.")
# We could remove the expired entry here, but it's handled by cleanup_expired_cache_entries
else:
print(f"Cache ID {cached_id} found in index but not in metadata. Cache inconsistency.")
print(f"No suitable cache entry found for query: '{query}'")
return None
except Exception as e:
print(f"Error during cache check: {e}")
print(traceback.format_exc())
return None
def cleanup_expired_cache_entries():
"""Removes expired entries from the cache and rebuilds the FAISS index if necessary."""
global faiss_index, cache_metadata
if faiss_index is None or faiss_index.ntotal == 0:
print("Cache is empty or not initialized. No expired entries to clean.")
return
print("Cleaning up expired cache entries...")
now = datetime.now()
expired_ids = [
cache_id for cache_id, cached_data in cache_metadata.items()
if (now - cached_data['timestamp']).days > CACHE_EXPIRATION_DAYS
]
if expired_ids:
print(f"Found {len(expired_ids)} expired cache entries.")
# Remove from metadata
for cache_id in expired_ids:
del cache_metadata[cache_id]
# Rebuild FAISS index with non-expired entries
if cache_metadata:
print("Rebuilding FAISS index with non-expired entries...")
try:
# Get embeddings for non-expired entries
non_expired_embeddings = []
non_expired_metadata_list = sorted(cache_metadata.items()) # Sort by ID to maintain order
for cache_id, cached_data in non_expired_metadata_list:
# Need to retrieve original query to re-embed
original_query = cached_data.get('query')
if original_query and embedder:
try:
non_expired_embeddings.append(embedder.encode(original_query, convert_to_tensor=False).tolist())
except Exception as e:
print(f"Error re-embedding query '{original_query}': {e}. Skipping.")
if non_expired_embeddings:
print(f"Re-embedding {len(non_expired_embeddings)} non-expired queries.")
faiss_index = faiss.IndexFlatL2(EMBEDDING_DIM)
faiss_index.add(np.array(non_expired_embeddings))
print(f"FAISS index rebuilt. New size: {faiss_index.ntotal}")
else:
print("No non-expired entries to rebuild FAISS index. Clearing index.")
faiss_index = faiss.IndexFlatL2(EMBEDDING_DIM)
cache_metadata = {} # Clear metadata if index is cleared
except Exception as e:
print(f"Error rebuilding FAISS index: {e}")
print(traceback.format_exc())
# On error, it might be safer to clear the cache to avoid inconsistencies
print("Clearing cache due to rebuild error.")
faiss_index = faiss.IndexFlatL2(EMBEDDING_DIM)
cache_metadata = {}
else:
print("All cache entries expired. Clearing FAISS index and metadata.")
faiss_index = faiss.IndexFlatL2(EMBEDDING_DIM)
cache_metadata = {}
save_cache() # Save after cleanup
else:
print("No expired cache entries found.")
# Main chat function with query breakdown and tool execution per question
async def chat(query: str, chat_history: list[dict], api_key: str):
"""
Processes user queries by breaking down multi-part queries, determining and
executing appropriate tools for each question asynchronously, and synthesizing results
using the LLM. Incorporates caching for repeated questions and routes
to primary or fallback model based on complexity.
"""
print(f"\n--- chat function received new query ---")
print(f" query: {query}")
print(f" Validating against SECRET_API_KEY: {'Yes' if SECRET_API_KEY else 'No'}")
print(f" chat_history: {chat_history}")
print(f" api_key from UI received: {'Yes' if api_key else 'No'}")
if not SECRET_API_KEY:
print("Error: APP_API_KEY secret not set in Hugging Face Space Secrets.")
# Log failure before returning
log_conversation(
user_query=query,
model_response="API key validation failed: Application not configured correctly. APP_API_KEY secret is missing.",
tool_details={"validation_status": "failed", "reason": "secret_not_set"},
user_id="unknown"
)
return "API key validation failed: Application not configured correctly. APP_API_KEY secret is missing."
if api_key != SECRET_API_KEY:
print("Error: API key from UI does not match SECRET_API_KEY.")
# Log failure before returning
log_conversation(
user_query=query,
model_response="API key validation failed: Invalid API key provided.",
tool_details={"validation_status": "failed", "reason": "invalid_api_key"},
user_id="unknown"
)
return "API key validation failed: Invalid API key provided."
# --- Cache Check ---
cached_response = check_cache(query)
if cached_response:
print(f"Returning cached response for query: '{query}'")
# Log the cached response
try:
user_id_to_log = "anonymous"
if chat_history:
for turn in chat_history:
if turn.get("role") == "user" and "user_id:" in turn.get("content", "").lower():
match = re.search(r"user_id:\s*(\S+)", turn.get("content", ""), re.IGNORECASE)
if match:
user_id_to_log = match.group(1)
break
log_conversation(
user_query=query,
model_response=cached_response,
tool_details={"cache_status": "hit"},
user_id=user_id_to_log
)
except Exception as e:
print(f"Error during logging of cached response: {e}")
print(traceback.format_exc())
return cached_response
print("\n--- Breaking down query ---")
# Use the primary client for query breakdown as it's generally better at understanding complex queries
prompt_for_question_breakdown = f"""
Analyze the following query and list each distinct question found within it.
Present each question on a new line, starting with a hyphen.
Query: {query}
"""
try:
messages_question_breakdown = primary_client.chat_completion( # Use primary client
messages=[{"role": "user", "content": prompt_for_question_breakdown}],
max_tokens=100,
temperature=0.1,
top_p=0.9
).choices[0].message.content or ""
individual_questions = [line.strip() for line in messages_question_breakdown.split('\n') if line.strip()]
cleaned_questions = [re.sub(r'^[-*]?\s*', '', q) for q in individual_questions if not q.strip().lower().startswith('note:')]
print("Individual questions identified:")
for q in cleaned_questions:
print(f"- {q}")
except Exception as e:
print(f"Error during LLM call for question breakdown (primary client): {e}")
print(traceback.format_exc())
print(f"Proceeding with original query as a single question due to breakdown error.")
cleaned_questions = [query]
print("\n--- Determining tools and complexity per question ---")
determined_tools_and_complexity = {}
for question in cleaned_questions:
print(f"\nAnalyzing question for tool determination and complexity: '{question}'")
tool, complexity = determine_tool_usage(question) # determine_tool_usage uses primary client for checks
determined_tools_and_complexity[question] = {"tool": tool, "complexity": complexity}
print(f"Determined tool and complexity for '{question}': Tool='{tool}', Complexity='{complexity}'")
print("\nSummary of determined tools and complexity per question:")
for question, details in determined_tools_and_complexity.items():
print(f"'{question}': Tool='{details['tool']}', Complexity='{details['complexity']}'")
print("\n--- Executing tools asynchronously and collecting results ---")
tool_results = {}
tasks = []
questions_to_process = []
for question, details in determined_tools_and_complexity.items():
tool = details['tool']
print(f"\nQueueing tool '{tool}' for question: '{question}')")
questions_to_process.append(question)
if tool == "date_calculation":
tasks.append(perform_date_calculation(question))
elif tool == "duckduckgo_search":
tasks.append(perform_duckduckgo_search(question))
elif tool == "business_info_retrieval":
# Business info retrieval is synchronous, run it directly or wrap in run_in_executor
# For simplicity and to leverage async, we'll wrap it.
loop = asyncio.get_event_loop()
tasks.append(loop.run_in_executor(None, retrieve_business_info, question))
elif tool == "none":
print(f"Skipping tool execution for question: '{question}' as tool is 'none'. LLM will handle.")
tasks.append(asyncio.Future()) # Add a placeholder future
tasks[-1].set_result("none") # Set result immediately to indicate no tool used
# Run all tasks concurrently
try:
results = await asyncio.gather(*tasks, return_exceptions=True)
print("\n--- Asynchronous Tool Execution Results ---")
for i, question in enumerate(questions_to_process):
result = results[i]
if isinstance(result, Exception):
print(f"Error executing tool for question '{question}': {result}")
tool_results[question] = f"An error occurred while fetching information for this part of your query: {result}" # Error message for the user
else:
print(f"Result for question '{question}': {result}")
tool_results[question] = result
print("\n-----------------------------------------")
except Exception as e:
print(f"An error occurred during asynchronous tool execution: {e}")
print(traceback.format_exc())
# If gathering fails completely, set error for all
for question in questions_to_process:
tool_results[question] = f"An error occurred while fetching information for this part of your query: {e}"
print("\n--- Collected Tool Results ---")
if tool_results:
for question, result in tool_results.items():
print(f"\nQuestion: {question}")
print(f"Result: {result}")
else:
print("No tool results were collected.")
print("\n--------------------------")
print("\n--- Generating final response ---")
# Determine the overall complexity to choose the final generation model
# If any question was determined as 'complex', use the primary model
overall_complexity = 'simple'
for details in determined_tools_and_complexity.values():
if details['complexity'] == 'complex':
overall_complexity = 'complex'
break
print(f"Overall query complexity determined as: '{overall_complexity}'")
final_response = generate_text(query, tool_results, chat_history, complexity_level=overall_complexity)
print("\n--- Final Response from LLM ---")
print(final_response)
print("\n----------------------------")
# --- Add response to cache ---
# We add the entire query and final response to the cache, not individual questions.
add_to_cache(query, final_response)
try:
user_id_to_log = "anonymous"
if chat_history:
for turn in chat_history:
if turn.get("role") == "user" and "user_id:" in turn.get("content", "").lower():
match = re.search(r"user_id:\s*(\S+)", turn.get("content", ""), re.IGNORECASE)
if match:
user_id_to_log = match.group(1)
break
logged_tool_details = {}
for question, details in determined_tools_and_complexity.items():
logged_tool_details[question] = {
"tool_used": details['tool'],
"complexity": details['complexity'],
"raw_output": tool_results.get(question)
}
logged_tool_details["cache_status"] = "miss" # Log cache miss when generating a new response
logged_tool_details["model_used_for_generation"] = "primary" if overall_complexity == 'complex' else "fallback"
# Call the logging function (currently logs to Hugging Face Dataset)
log_conversation(
user_query=query,
model_response=final_response,
tool_details=logged_tool_details,
user_id=user_id_to_log
)
except Exception as e:
print(f"Error during conversation logging after response generation: {e}")
print(traceback.format_exc())
return final_response
# Keep the Gradio interface setup as is for now
if __name__ == "__main__":
# Load/Create Hugging Face Dataset on startup
try:
# Attempt to load the existing dataset
print(f"Attempting to load dataset from {dataset_name} on startup...")
# Use load_dataset for loading directly from the Hub
conversation_dataset = load_dataset(dataset_name, token=HF_TOKEN)
print(f"Successfully loaded existing dataset from {dataset_name} on startup.")
print(conversation_dataset)
except Exception as e:
print(f"Dataset not found or failed to load from {dataset_name} on startup: {e}")
print("Creating a new dataset object on startup...")
# Define the schema for conversation logs
# Using 'string' as the data type for simplicity, tool_details will be JSON string
log_schema = {
'timestamp': 'string',
'user_id': 'string',
'user_query': 'string',
'model_response': 'string',
'tool_details': 'string' # Store JSON string here
}
# Create an empty dataset with the defined schema
empty_data = {col: [] for col in log_schema.keys()}
new_dataset = Dataset.from_dict(empty_data)
# Wrap the dataset in a DatasetDict
conversation_dataset = DatasetDict({'train': new_dataset})
print(f"Created a new empty dataset object with schema: {log_schema}")
print(conversation_dataset)
authenticate_google_sheets()
load_business_info() # This will also create RAG embeddings if data is loaded
if nlp is None:
print("Warning: SpaCy model not loaded. Sentence splitting may not work correctly.")
if embedder is None:
print("Warning: Sentence Transformer (embedder) not loaded. RAG will not be available.")
if reranker is None:
print("Warning: Cross-Encoder Reranker not loaded. Re-ranking of RAG results will not be performed.")
if not business_info_available:
print("Warning: Business information (Google Sheet data) not loaded successfully. "
"RAG will not be available. Please ensure the GOOGLE_BASE64_CREDENTIALS secret is set correctly.")
DESCRIPTION = """
# LLM with Tools (DuckDuckGo Search, Date Calculation, Business Info RAG, Hugging Face Dataset Logging) and Two-Tier Model System
Ask me anything! I can perform web searches, calculate dates, retrieve business information using RAG, and conversation data will be logged to a Hugging Face Dataset. I use a primary LLaMA-70B model for complex queries and a fallback Gemma-2-9b-it model for simpler ones and RAG synthesis.
"""
demo = gr.ChatInterface(
fn=chat,
stop_btn=None,
examples=[
["Hello there! How are you doing?"],
["What is the current time in East Africa?"],
["Tell me about the 'Project Management' service from Absa."],
["Search the web for the latest news on AI."],
["Habari!"],
["What is the date next Tuesday?"],
["What is the time in East Africa and search for latest AI news"],
["Who is Jackson Kisanga?"], # Example for business info retrieval
["What is the weather like in London?"], # Example for web search
["Tell me a joke."], # Example for simple query
],
cache_examples=False,
type="messages",
description=DESCRIPTION,
fill_height=True,
additional_inputs=[
gr.Textbox(label="API Key", type="password", placeholder="Enter your API key (starts with fs_)", interactive=True)
],
additional_inputs_accordion="API Key (Required)"
)
try:
# Initialize the cache before launching the demo
initialize_cache()
demo.launch(debug=True, show_error=True)
except Exception as e:
print(f"Error launching Gradio interface: {e}")
print(traceback.format_exc())
print("Please check the console output for more details on the error.")
|