File size: 32,575 Bytes
ab4488b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 |
from __future__ import absolute_import
from functools import partial
import numpy as onp
from ..util import func
from . import numpy_wrapper as anp
from .numpy_boxes import ArrayBox
from autograd.extend import (primitive, vspace, defvjp, defvjp_argnum,
SparseObject, VJPNode, register_notrace)
# ----- Non-differentiable functions -----
nograd_functions = [
anp.floor, anp.ceil, anp.round, anp.rint, anp.around, anp.fix, anp.trunc, anp.all,
anp.any, anp.argmax, anp.argmin, anp.argpartition, anp.argsort, anp.argwhere, anp.nonzero,
anp.flatnonzero, anp.count_nonzero, anp.searchsorted, anp.sign, anp.ndim, anp.shape,
anp.floor_divide, anp.logical_and, anp.logical_or, anp.logical_not, anp.logical_xor,
anp.isfinite, anp.isinf, anp.isnan, anp.isneginf, anp.isposinf, anp.allclose, anp.isclose,
anp.array_equal, anp.array_equiv, anp.greater, anp.greater_equal, anp.less, anp.less_equal,
anp.equal, anp.not_equal, anp.iscomplexobj, anp.iscomplex, anp.size, anp.isscalar,
anp.isreal, anp.zeros_like, anp.ones_like, anp.result_type]
for fun in nograd_functions:
register_notrace(VJPNode, fun)
# ----- Functions that are constant w.r.t. continuous inputs -----
defvjp(anp.nan_to_num, lambda ans, x: lambda g: anp.where(anp.isfinite(x), g, 0.))
# ----- Binary ufuncs -----
defvjp(anp.add, lambda ans, x, y : unbroadcast_f(x, lambda g: g),
lambda ans, x, y : unbroadcast_f(y, lambda g: g))
defvjp(anp.multiply, lambda ans, x, y : unbroadcast_f(x, lambda g: y * g),
lambda ans, x, y : unbroadcast_f(y, lambda g: x * g))
defvjp(anp.subtract, lambda ans, x, y : unbroadcast_f(x, lambda g: g),
lambda ans, x, y : unbroadcast_f(y, lambda g: -g))
defvjp(anp.divide, lambda ans, x, y : unbroadcast_f(x, lambda g: g / y),
lambda ans, x, y : unbroadcast_f(y, lambda g: - g * x / y**2))
defvjp(anp.maximum, lambda ans, x, y : unbroadcast_f(x, lambda g: g * balanced_eq(x, ans, y)),
lambda ans, x, y : unbroadcast_f(y, lambda g: g * balanced_eq(y, ans, x)))
defvjp(anp.minimum, lambda ans, x, y : unbroadcast_f(x, lambda g: g * balanced_eq(x, ans, y)),
lambda ans, x, y : unbroadcast_f(y, lambda g: g * balanced_eq(y, ans, x)))
defvjp(anp.fmax, lambda ans, x, y : unbroadcast_f(x, lambda g: g * balanced_eq(x, ans, y)),
lambda ans, x, y : unbroadcast_f(y, lambda g: g * balanced_eq(y, ans, x)))
defvjp(anp.fmin, lambda ans, x, y : unbroadcast_f(x, lambda g: g * balanced_eq(x, ans, y)),
lambda ans, x, y : unbroadcast_f(y, lambda g: g * balanced_eq(y, ans, x)))
defvjp(anp.logaddexp, lambda ans, x, y : unbroadcast_f(x, lambda g: g * anp.exp(x-ans)),
lambda ans, x, y : unbroadcast_f(y, lambda g: g * anp.exp(y-ans)))
defvjp(anp.logaddexp2, lambda ans, x, y : unbroadcast_f(x, lambda g: g * 2**(x-ans)),
lambda ans, x, y : unbroadcast_f(y, lambda g: g * 2**(y-ans)))
defvjp(anp.true_divide, lambda ans, x, y : unbroadcast_f(x, lambda g: g / y),
lambda ans, x, y : unbroadcast_f(y, lambda g: - g * x / y**2))
defvjp(anp.mod, lambda ans, x, y : unbroadcast_f(x, lambda g: g),
lambda ans, x, y : unbroadcast_f(y, lambda g: -g * anp.floor(x/y)))
defvjp(anp.remainder, lambda ans, x, y : unbroadcast_f(x, lambda g: g),
lambda ans, x, y : unbroadcast_f(y, lambda g: -g * anp.floor(x/y)))
defvjp(anp.power,
lambda ans, x, y : unbroadcast_f(x, lambda g: g * y * x ** anp.where(y, y - 1, 1.)),
lambda ans, x, y : unbroadcast_f(y, lambda g: g * anp.log(replace_zero(x, 1.)) * ans))
defvjp(anp.arctan2, lambda ans, x, y : unbroadcast_f(x, lambda g: g * y / (x**2 + y**2)),
lambda ans, x, y : unbroadcast_f(y, lambda g: g * -x / (x**2 + y**2)))
defvjp(anp.hypot,
lambda ans, x, y : unbroadcast_f(x, lambda g: g * x / ans),
lambda ans, x, y : unbroadcast_f(y, lambda g: g * y / ans))
# ----- Simple grads -----
defvjp(anp.negative, lambda ans, x: lambda g: -g)
defvjp(anp.abs,
lambda ans, x : lambda g: g * replace_zero(anp.conj(x), 0.) / replace_zero(ans, 1.))
defvjp(anp.fabs, lambda ans, x : lambda g: anp.sign(x) * g) # fabs doesn't take complex numbers.
defvjp(anp.absolute, lambda ans, x : lambda g: g * anp.conj(x) / ans)
defvjp(anp.reciprocal, lambda ans, x : lambda g: - g / x**2)
defvjp(anp.exp, lambda ans, x : lambda g: ans * g)
defvjp(anp.exp2, lambda ans, x : lambda g: ans * anp.log(2) * g)
defvjp(anp.expm1, lambda ans, x : lambda g: (ans + 1) * g)
defvjp(anp.log, lambda ans, x : lambda g: g / x)
defvjp(anp.log2, lambda ans, x : lambda g: g / x / anp.log(2))
defvjp(anp.log10, lambda ans, x : lambda g: g / x / anp.log(10))
defvjp(anp.log1p, lambda ans, x : lambda g: g / (x + 1))
defvjp(anp.sin, lambda ans, x : lambda g: g * anp.cos(x))
defvjp(anp.cos, lambda ans, x : lambda g: - g * anp.sin(x))
defvjp(anp.tan, lambda ans, x : lambda g: g / anp.cos(x) **2)
defvjp(anp.arcsin, lambda ans, x : lambda g: g / anp.sqrt(1 - x**2))
defvjp(anp.arccos, lambda ans, x : lambda g:-g / anp.sqrt(1 - x**2))
defvjp(anp.arctan, lambda ans, x : lambda g: g / (1 + x**2))
defvjp(anp.sinh, lambda ans, x : lambda g: g * anp.cosh(x))
defvjp(anp.cosh, lambda ans, x : lambda g: g * anp.sinh(x))
defvjp(anp.tanh, lambda ans, x : lambda g: g / anp.cosh(x) **2)
defvjp(anp.arcsinh, lambda ans, x : lambda g: g / anp.sqrt(x**2 + 1))
defvjp(anp.arccosh, lambda ans, x : lambda g: g / anp.sqrt(x**2 - 1))
defvjp(anp.arctanh, lambda ans, x : lambda g: g / (1 - x**2))
defvjp(anp.rad2deg, lambda ans, x : lambda g: g / anp.pi * 180.0)
defvjp(anp.degrees, lambda ans, x : lambda g: g / anp.pi * 180.0)
defvjp(anp.deg2rad, lambda ans, x : lambda g: g * anp.pi / 180.0)
defvjp(anp.radians, lambda ans, x : lambda g: g * anp.pi / 180.0)
defvjp(anp.square, lambda ans, x : lambda g: g * 2 * x)
defvjp(anp.sqrt, lambda ans, x : lambda g: g * 0.5 * x**-0.5)
defvjp(anp.sinc, lambda ans, x : lambda g: g * (anp.cos(anp.pi*x)*anp.pi*x - anp.sin(anp.pi*x))/(anp.pi*x**2))
defvjp(anp.reshape, lambda ans, x, shape, order=None : lambda g: anp.reshape(g, anp.shape(x), order=order))
defvjp(anp.roll, lambda ans, x, shift, axis=None : lambda g: anp.roll(g, -shift, axis=axis))
defvjp(anp.array_split, lambda ans, ary, idxs, axis=0 : lambda g: anp.concatenate(g, axis=axis))
defvjp(anp.split, lambda ans, ary, idxs, axis=0 : lambda g: anp.concatenate(g, axis=axis))
defvjp(anp.vsplit, lambda ans, ary, idxs : lambda g: anp.concatenate(g, axis=0))
defvjp(anp.hsplit, lambda ans, ary, idxs : lambda g: anp.concatenate(g, axis=1))
defvjp(anp.dsplit, lambda ans, ary, idxs : lambda g: anp.concatenate(g, axis=2))
defvjp(anp.ravel, lambda ans, x, order=None : lambda g: anp.reshape(g, anp.shape(x), order=order))
defvjp(anp.expand_dims, lambda ans, x, axis : lambda g: anp.reshape(g, anp.shape(x)))
defvjp(anp.squeeze, lambda ans, x, axis=None : lambda g: anp.reshape(g, anp.shape(x)))
defvjp(anp.diag, lambda ans, x, k=0 : lambda g: anp.diag(g, k))
defvjp(anp.flipud, lambda ans, x, : lambda g: anp.flipud(g))
defvjp(anp.fliplr, lambda ans, x, : lambda g: anp.fliplr(g))
defvjp(anp.rot90, lambda ans, x, k=1 : lambda g: anp.rot90(g, -k))
defvjp(anp.trace, lambda ans, x, offset=0 : lambda g:
anp.einsum('ij,...->ij...', anp.eye(x.shape[0], x.shape[1], k=offset), g))
defvjp(anp.full, lambda ans, shape, fill_value, dtype=None : lambda g: anp.sum(g), argnums=(1,))
defvjp(anp.triu, lambda ans, x, k=0 : lambda g: anp.triu(g, k=k))
defvjp(anp.tril, lambda ans, x, k=0 : lambda g: anp.tril(g, k=k))
defvjp(anp.clip, lambda ans, x, a_min, a_max : lambda g: g * anp.logical_and(ans != a_min, ans != a_max))
defvjp(anp.swapaxes, lambda ans, x, axis1, axis2: lambda g: anp.swapaxes(g, axis2, axis1))
defvjp(anp.moveaxis, lambda ans, a, source, destination: lambda g:
anp.moveaxis(g, destination, source))
defvjp(anp.real_if_close, lambda ans, x : lambda g: match_complex(x, g))
defvjp(anp.real, lambda ans, x : lambda g: match_complex(x, g))
defvjp(anp.imag, lambda ans, x : lambda g: match_complex(x, -1j * g))
defvjp(anp.conj, lambda ans, x : lambda g: anp.conj(g))
defvjp(anp.conjugate, lambda ans, x: lambda g: anp.conj(g))
defvjp(anp.angle, lambda ans, x : lambda g: match_complex(x, g * anp.conj(x * 1j) / anp.abs(x)**2))
defvjp(anp.where, None,
lambda ans, c, x=None, y=None : lambda g: anp.where(c, g, anp.zeros(g.shape)),
lambda ans, c, x=None, y=None : lambda g: anp.where(c, anp.zeros(g.shape), g))
defvjp(anp.cross, lambda ans, a, b, axisa=-1, axisb=-1, axisc=-1, axis=None : lambda g:
anp.cross(b, g, axisb, axisc, axisa, axis),
lambda ans, a, b, axisa=-1, axisb=-1, axisc=-1, axis=None : lambda g:
anp.cross(g, a, axisc, axisa, axisb, axis))
defvjp(anp.linspace, lambda ans, start, stop, num : lambda g: anp.dot(anp.linspace(1.0, 0.0, num), g),
lambda ans, start, stop, num : lambda g: anp.dot(anp.linspace(0.0, 1.0, num), g))
defvjp(anp._astype,
lambda ans, A, dtype, order='K', casting='unsafe', subok=True, copy=True:
lambda g: anp._astype(g, A.dtype))
# ----- Trickier grads -----
def grad_rollaxis(ans, a, axis, start=0):
if axis < 0:
raise NotImplementedError("Gradient of rollaxis not implemented for axis < 0. "
"Please use moveaxis instead.")
elif start < 0:
raise NotImplementedError("Gradient of rollaxis not implemented for start < 0. "
"Please use moveaxis instead.")
return lambda g: anp.rollaxis(g, start - 1, axis) if start > axis else anp.rollaxis(g, start, axis + 1)
defvjp(anp.rollaxis, grad_rollaxis)
def grad_diff(ans, a, n=1, axis=-1):
nd = anp.ndim(a)
ans_shape = anp.shape(ans)
sl1 = [slice(None)]*nd
sl1[axis] = slice(None, 1)
sl2 = [slice(None)]*nd
sl2[axis] = slice(-1, None)
def undiff(g):
if g.shape[axis] > 0:
return anp.concatenate((-g[tuple(sl1)], -anp.diff(g, axis=axis), g[tuple(sl2)]), axis=axis)
shape = list(ans_shape)
shape[axis] = 1
return anp.zeros(shape)
def helper(g, n):
if n == 0:
return g
return helper(undiff(g), n-1)
return lambda g: helper(g, n)
defvjp(anp.diff, grad_diff)
def grad_gradient(ans, x, *vargs, **kwargs):
axis = kwargs.pop('axis', None)
if vargs or kwargs:
raise NotImplementedError(
"The only optional argument currently supported for np.gradient "
"is axis.")
if axis is None:
axis = range(x.ndim)
elif type(axis) is int:
axis = [axis]
else:
axis = list(axis)
x_dtype = x.dtype
x_shape = x.shape
nd = x.ndim
def vjp(g):
if anp.ndim(g) == nd:
# add axis if gradient was along one axis only
g = g[anp.newaxis]
# accumulate gradient
out = anp.zeros(x_shape, dtype=x_dtype)
for i, a in enumerate(axis):
# swap gradient axis to the front
g_swap = anp.swapaxes(g[i], 0, a)[:, anp.newaxis]
out_axis = anp.concatenate((
-g_swap[0] - 0.5 * g_swap[1],
g_swap[0] - 0.5 * g_swap[2],
(-1.) * anp.gradient(g_swap, axis=0)[2:-2, 0],
0.5 * g_swap[-3] - g_swap[-1],
0.5 * g_swap[-2] + g_swap[-1],
), axis=0)
out = out + anp.swapaxes(out_axis, 0, a)
return out
return vjp
defvjp(anp.gradient, grad_gradient)
def grad_repeat(ans, x, repeats, axis=None):
shape = anp.shape(x)
def vjp(g):
if axis is None: # If axis is none, np.repeat() repeats the flattened array.
expanded = anp.reshape(g, (anp.prod(shape),) + (repeats,))
return anp.reshape(anp.sum(expanded, axis=1, keepdims=False), shape)
else:
if shape[axis] == 1: # For this common case, the logic is simple.
return anp.sum(g, axis=axis, keepdims=True)
else:
expanded = anp.reshape(g, shape[0:axis+1] + (repeats,) + shape[axis+1:])
return anp.sum(expanded, axis=axis+1, keepdims=False)
return vjp
defvjp(anp.repeat, grad_repeat)
def grad_tile(ans, x, reps):
reps = [reps] if anp.isscalar(reps) else reps
x_shape = anp.shape(x)
def vjp(g):
for axis, rep in enumerate(reps):
g = sum(anp.split(g, rep, axis))
return anp.reshape(g, x_shape)
return vjp
defvjp(anp.tile, grad_tile)
def grad_kron(argnum, ans, orig_A, orig_B):
# kron has different promotion rules than dot. the reshapes are necessary if
# and only if (1) orig_B is 1D or (2) orig_A and/or orig_B are 0D
orig_A_shape = anp.shape(orig_A)
orig_B_shape = anp.shape(orig_B)
def vjp(G):
A, B = anp.atleast_2d(orig_A), anp.atleast_2d(orig_B)
shape = list(A.shape + B.shape)
n = anp.ndim(A)
shape[n-1], shape[n] = shape[n], shape[n-1]
reshaped_G = anp.swapaxes(anp.reshape(G, shape), n-1, n)
if argnum == 0:
return match_complex(orig_A, anp.reshape(anp.tensordot(reshaped_G, B, axes=anp.ndim(B)), orig_A_shape))
else:
return match_complex(orig_B, anp.reshape(anp.tensordot(A, reshaped_G, axes=anp.ndim(A)), orig_B_shape))
return vjp
defvjp(anp.kron, partial(grad_kron, 0), partial(grad_kron, 1))
def grad_transpose(ans, x, axes=None):
if axes is not None:
axes = anp.argsort(axes)
return lambda g: anp.transpose(g, axes)
defvjp(anp.transpose, grad_transpose)
def repeat_to_match_shape(g, shape, dtype, axis, keepdims):
"""Returns the array g repeated along axis to fit vector space vs.
Also returns the number of repetitions of the array."""
if shape == ():
return g, 1
axis = list(axis) if isinstance(axis, tuple) else axis
new_shape = onp.array(shape)
new_shape[axis] = 1
num_reps = onp.prod(onp.array(shape)[axis])
# Can't use broadcast_to because of numpy bug: https://github.com/numpy/numpy/issues/9165
# return anp.broadcast_to(anp.reshape(g, new_shape), shape), num_reps
return anp.reshape(g, new_shape) + onp.zeros(shape, dtype=dtype), num_reps
def grad_broadcast_to(ans, x, new_shape):
old_shape = anp.shape(x)
assert anp.shape(ans) == new_shape
assert len(old_shape) == len(new_shape), "Can't handle extra leading dims"
broadcast_axes = tuple(onp.where(onp.logical_and(
onp.array(old_shape) == 1,
onp.array(new_shape) > 1))[0])
return lambda g: anp.sum(g, axis=broadcast_axes, keepdims=True)
defvjp(anp.broadcast_to, grad_broadcast_to)
def grad_np_sum(ans, x, axis=None, keepdims=False, dtype=None):
shape, dtype = anp.shape(x), anp.result_type(x)
return lambda g: repeat_to_match_shape(g, shape, dtype, axis, keepdims)[0]
defvjp(anp.sum, grad_np_sum)
def grad_np_mean(ans, x, axis=None, keepdims=False):
shape, dtype = anp.shape(x), anp.result_type(x)
def vjp(g):
g_repeated, num_reps = repeat_to_match_shape(g, shape, dtype, axis, keepdims)
return g_repeated / num_reps
return vjp
defvjp(anp.mean, grad_np_mean)
def grad_np_prod(ans, x, axis=None, keepdims=False): # TODO: Support tuples of axes.
shape, dtype = anp.shape(x), anp.result_type(x)
def vjp(g):
g_repeated, _ = repeat_to_match_shape(g * ans, shape, dtype, axis, keepdims)
return g_repeated / x
return vjp
defvjp(anp.prod, grad_np_prod)
def grad_np_var(ans, x, axis=None, ddof=0, keepdims=False):
shape, _, dtype, iscomplex = anp.metadata(x)
def vjp(g):
if iscomplex:
g = g + 0j
g_repeated, num_reps = repeat_to_match_shape(g, shape, dtype, axis, keepdims)
x_minus_mean = anp.conj(x - anp.mean(x, axis=axis, keepdims=True))
return 2.0 * g_repeated * x_minus_mean / (num_reps - ddof)
return vjp
defvjp(anp.var, grad_np_var)
def grad_np_std(ans, x, axis=None, ddof=0, keepdims=False):
shape, _, dtype, iscomplex = anp.metadata(x)
def vjp(g):
if iscomplex:
g = g + 0j
g_repeated, num_reps = repeat_to_match_shape(g, shape, dtype, axis, keepdims) # Avoid division by zero.
if num_reps <= 1:
return g_repeated * 0.0
else:
g_repeated, num_reps = repeat_to_match_shape(g / ans, shape, dtype, axis, keepdims)
x_minus_mean = anp.conj(x - anp.mean(x, axis=axis, keepdims=True))
return g_repeated * x_minus_mean / (num_reps - ddof)
return vjp
defvjp(anp.std, grad_np_std)
def grad_chooser(ans, x, axis=None, keepdims=None):
shape, dtype = anp.shape(x), anp.result_type(x)
def vjp(g):
"""Builds gradient of functions that choose a single item, such as min or max."""
g_repeated, _ = repeat_to_match_shape(g, shape, dtype, axis, keepdims)
argmax_locations = x == repeat_to_match_shape(ans, shape, dtype, axis, keepdims)[0]
return g_repeated * argmax_locations \
/ onp.sum(argmax_locations, axis=axis, keepdims=True)
return vjp
defvjp(anp.max, grad_chooser)
defvjp(anp.min, grad_chooser)
defvjp(anp.amax, grad_chooser)
defvjp(anp.amin, grad_chooser)
def reverse_axis(x, axis):
x = x.swapaxes(axis, 0)
x = x[::-1,...]
return x.swapaxes(0, axis)
def grad_np_cumsum(ans, x, axis=None):
def vjp(g):
if axis:
return reverse_axis(anp.cumsum(reverse_axis(g, axis), axis), axis)
else:
return anp.reshape(anp.cumsum(g[::-1], axis)[::-1], x.shape)
return vjp
defvjp(anp.cumsum, grad_np_cumsum)
def grad_inner(argnum, ans, A, B):
A_ndim, B_ndim = anp.ndim(A), anp.ndim(B)
if A_ndim == 0 or B_ndim == 0:
axes = ([], [])
else:
axes = ([A_ndim - 1], [B_ndim - 1])
if argnum == 0:
return lambda G: tensordot_adjoint_0(B, G, axes, A_ndim, B_ndim)
elif argnum == 1:
return lambda G: tensordot_adjoint_1(A, G, axes, A_ndim, B_ndim)
defvjp(anp.inner, partial(grad_inner, 0), partial(grad_inner, 1))
def matmul_adjoint_0(B, G, A_meta, B_ndim):
if anp.ndim(G) == 0: # A_ndim == B_ndim == 1
return unbroadcast(G * B, A_meta)
_, A_ndim, _, _ = A_meta
if A_ndim == 1:
G = anp.expand_dims(G, anp.ndim(G) - 1)
if B_ndim == 1: # The result we need is an outer product
B = anp.expand_dims(B, 0)
G = anp.expand_dims(G, anp.ndim(G))
else: # We need to swap the last two axes of B
B = anp.swapaxes(B, B_ndim - 2, B_ndim - 1)
result = anp.matmul(G, B)
return unbroadcast(result, A_meta)
def matmul_adjoint_1(A, G, A_ndim, B_meta):
if anp.ndim(G) == 0: # A_ndim == B_ndim == 1
return unbroadcast(G * A, B_meta)
_, B_ndim, _, _ = B_meta
B_is_vec = (B_ndim == 1)
if B_is_vec:
G = anp.expand_dims(G, anp.ndim(G))
if A_ndim == 1: # The result we need is an outer product
A = anp.expand_dims(A, 1)
G = anp.expand_dims(G, anp.ndim(G) - 1)
else: # We need to swap the last two axes of A
A = anp.swapaxes(A, A_ndim - 2, A_ndim - 1)
result = anp.matmul(A, G)
if B_is_vec:
result = anp.squeeze(result, anp.ndim(G) - 1)
return unbroadcast(result, B_meta)
def matmul_vjp_0(ans, A, B):
A_meta = anp.metadata(A)
B_ndim = anp.ndim(B)
return lambda g: matmul_adjoint_0(B, g, A_meta, B_ndim)
def matmul_vjp_1(ans, A, B):
A_ndim = anp.ndim(A)
B_meta = anp.metadata(B)
return lambda g: matmul_adjoint_1(A, g, A_ndim, B_meta)
defvjp(anp.matmul, matmul_vjp_0, matmul_vjp_1)
@primitive
def dot_adjoint_0(B, G, A_meta, B_meta):
_, A_ndim, A_dtype, _ = A_meta
_, B_ndim, _, _ = B_meta
if B_ndim == 0 or B_ndim == 1 or A_ndim == 0:
contract_num = max(0, B_ndim - (A_ndim != 0))
out = onp.tensordot(G, B, contract_num)
else:
out = onp.tensordot(G, onp.swapaxes(B, -1, -2), B_ndim - 1)
return onp.asarray(out, dtype=A_dtype)
@primitive
def dot_adjoint_1(A, G, A_meta, B_meta):
_, A_ndim, _, _ = A_meta
_, B_ndim, B_dtype, _ = B_meta
needs_transpose = B_ndim > 1 and A_ndim != 0
swap = (lambda x: onp.swapaxes(x, -1, -2)) if needs_transpose else (lambda x: x)
if A_ndim == 0 or A_ndim == 1 or B_ndim == 0:
contract_num = max(0, A_ndim - (B_ndim != 0))
out = swap(onp.tensordot(G, A, contract_num))
else:
out = swap(onp.tensordot(
G, A, [range(-A_ndim - B_ndim + 2, -B_ndim + 1), range(A_ndim - 1)]))
return onp.asarray(out, dtype=B_dtype)
def dot_vjp_0(ans, A, B):
A_meta, B_meta = anp.metadata(A), anp.metadata(B)
return lambda g: match_complex(A, dot_adjoint_0(B, g, A_meta, B_meta))
def dot_vjp_1(ans, A, B):
A_meta, B_meta = anp.metadata(A), anp.metadata(B)
return lambda g: match_complex(B, dot_adjoint_1(A, g, A_meta, B_meta))
defvjp(anp.dot, dot_vjp_0, dot_vjp_1)
defvjp(dot_adjoint_0, lambda ans, B, g, An, Bn: lambda A: match_complex(B, dot_adjoint_1(A, g, An, Bn)),
lambda ans, B, g, An, Bn: lambda A: match_complex(g, anp.dot(A, B)))
defvjp(dot_adjoint_1, lambda ans, A, g, An, Bn: lambda B: match_complex(A, dot_adjoint_0(B, g, An, Bn)),
lambda ans, A, g, An, Bn: lambda B: match_complex(g, anp.dot(A, B)))
@primitive
def tensordot_adjoint_0(B, G, axes, A_ndim, B_ndim):
# The adjoint of the operator
# A |--> np.tensordot(A, B, axes)
if B_ndim == 0:
return G * B
G_axes = onp.arange(onp.ndim(G))
if type(axes) is int:
axes = max(axes, 0)
B_axes = onp.arange(B_ndim)
return onp.tensordot(G, B, [G_axes[A_ndim-axes:], B_axes[axes:]])
else:
axes0 = [axes[0]] if type(axes[0]) is int else axes[0]
axes1 = [axes[1]] if type(axes[1]) is int else axes[1]
axes = [axes0, axes1]
A_axes = onp.arange(A_ndim)
B_axes = onp.arange(B_ndim)
summed_axes = [onp.asarray(axes[0], dtype='int64') % A_ndim,
onp.asarray(axes[1], dtype='int64') % B_ndim]
other_axes = [onp.delete(A_axes, summed_axes[0]),
onp.delete(B_axes, summed_axes[1])]
out = onp.tensordot(G, B, [G_axes[len(other_axes[0]):], other_axes[1]])
perm = onp.argsort(onp.concatenate(
(other_axes[0], summed_axes[0][onp.argsort(summed_axes[1])])))
return onp.transpose(out, perm)
@primitive
def tensordot_adjoint_1(A, G, axes, A_ndim, B_ndim):
# The adjoint of the operator
# B |--> np.tensordot(A, B, axes)
if A_ndim == 0:
return G * A
G_axes = onp.arange(onp.ndim(G))
if type(axes) is int:
axes = max(axes, 0)
A_axes = onp.arange(A_ndim)
return onp.tensordot(A, G, [A_axes[:A_ndim-axes], G_axes[:A_ndim-axes]])
else:
axes0 = [axes[0]] if type(axes[0]) is int else axes[0]
axes1 = [axes[1]] if type(axes[1]) is int else axes[1]
axes = [axes0, axes1]
A_axes = onp.arange(A_ndim)
B_axes = onp.arange(B_ndim)
summed_axes = [onp.asarray(axes[0], dtype='int64') % A_ndim,
onp.asarray(axes[1], dtype='int64') % B_ndim]
other_axes = [onp.delete(A_axes, summed_axes[0]),
onp.delete(B_axes, summed_axes[1])]
out = onp.tensordot(A, G, [other_axes[0], G_axes[:len(other_axes[0])]])
perm = onp.argsort(onp.concatenate(
(summed_axes[1][onp.argsort(summed_axes[0])], other_axes[1])))
return onp.transpose(out, perm)
def tensordot_vjp_0(ans, A, B, axes=2):
A_ndim, B_ndim = anp.ndim(A), anp.ndim(B)
return lambda G: match_complex(A, tensordot_adjoint_0(B, G, axes, A_ndim, B_ndim))
def tensordot_vjp_1(ans, A, B, axes=2):
A_ndim, B_ndim = anp.ndim(A), anp.ndim(B)
return lambda G: match_complex(B, tensordot_adjoint_1(A, G, axes, A_ndim, B_ndim))
defvjp(anp.tensordot, tensordot_vjp_0, tensordot_vjp_1)
defvjp(tensordot_adjoint_0, lambda ans, B, G, axes, An, Bn: lambda A: match_complex(B, tensordot_adjoint_1(A, G, axes, An, Bn)),
lambda ans, B, G, axes, An, Bn: lambda A: match_complex(G, anp.tensordot(A, B, axes)))
defvjp(tensordot_adjoint_1, lambda ans, A, G, axes, An, Bn: lambda B: match_complex(A, tensordot_adjoint_0(B, G, axes, An, Bn)),
lambda ans, A, G, axes, An, Bn: lambda B: match_complex(G, anp.tensordot(A, B, axes)))
defvjp(anp.outer, lambda ans, a, b : lambda g: match_complex(a, anp.dot(g, b.T)),
lambda ans, a, b : lambda g: match_complex(b, anp.dot(a.T, g)))
def grad_concatenate_args(argnum, ans, axis_args, kwargs):
axis, args = axis_args[0], axis_args[1:]
sizes = [anp.shape(a)[axis] for a in args[:argnum]]
start = sum(sizes[:-1])
idxs = [slice(None)] * ans.ndim
idxs[axis] = slice(start, start + sizes[-1])
return lambda g: g[tuple(idxs)]
defvjp_argnum(anp.concatenate_args, grad_concatenate_args)
def wrapped_reshape(x, *args, **kwargs):
# The reshape method can be called like A.reshape((5,4)) or A.reshape(5,4).
# The reshape function doesn't support both ways, so we have to wrap it.
if isinstance(args[0], int):
return anp.reshape(x, args, **kwargs)
else:
return anp.reshape(x, *args, **kwargs)
setattr(ArrayBox, 'reshape', wrapped_reshape)
def grad_sort(ans, x, axis=-1, kind='quicksort', order=None):
#TODO: Cast input with np.asanyarray()
if len(x.shape) > 1:
raise NotImplementedError(
"Gradient of sort not implemented for multi-dimensional arrays.")
sort_perm = anp.argsort(x, axis, kind, order)
return lambda g: unpermuter(g, sort_perm)
defvjp(anp.sort, grad_sort)
if onp.lib.NumpyVersion(onp.__version__) < '2.0.0':
defvjp(anp.msort, grad_sort) # Until multi-D is allowed, these are the same.
def grad_partition(ans, x, kth, axis=-1, kind='introselect', order=None):
#TODO: Cast input with np.asanyarray()
if len(x.shape) > 1:
raise NotImplementedError(
"Gradient of partition not implemented for multi-dimensional arrays.")
partition_perm = anp.argpartition(x, kth, axis, kind, order)
return lambda g: unpermuter(g, partition_perm)
defvjp(anp.partition, grad_partition)
def unpermuter(g, permutation):
unsort = anp.zeros(len(permutation), dtype=int)
unsort[permutation] = list(range(len(permutation)))
return g[unsort]
def grad_reshape_list(ans, *arys):
if len(arys) > 1:
raise NotImplementedError("Can't handle multiple arguments yet.")
return lambda g: anp.reshape(g, anp.shape(arys[0]))
defvjp(anp.atleast_1d, grad_reshape_list)
defvjp(anp.atleast_2d, grad_reshape_list)
defvjp(anp.atleast_3d, grad_reshape_list)
def grad_einsum(argnum, ans, operands_, kwargs):
result_meta = anp.metadata(operands_[argnum])
def vjp(g):
operands = operands_
if isinstance(operands[0], str): # using "ijk" convention.
in_subs, out_subs, _ = anp.parse_einsum_input(*operands)
string, operands = operands[0], operands[1:]
in_subs_list = in_subs.split(',')
op_num = argnum - 1
subs_wrt = in_subs_list[op_num]
rest_of_ops = operands[:op_num] + operands[op_num+1:]
rest_of_subs = in_subs_list[:op_num] + in_subs_list[op_num+1:]
# subscripts that only appear in subs_wrt (and not in other subscript lists
# or in the output) are implicitly being summed out, as if contracted
# against a tensor of ones. we make that tensor of ones explicit to handle
# the necessary vjp broadcasting inside einsum.
other_named_subs = set(''.join([out_subs] + rest_of_subs))
naked_summed = [(i, sub) for i, sub in enumerate(subs_wrt)
if sub not in other_named_subs]
if naked_summed:
naked_summed_dims, ones_subs = zip(*naked_summed)
ones_subs = ''.join(ones_subs)
ones = onp.ones(onp.array(operands[op_num].shape)[list(naked_summed_dims)])
new_input_subs = ','.join([out_subs, ones_subs] + rest_of_subs)
new_operands = (g, ones) + rest_of_ops
else:
new_input_subs = ','.join([out_subs] + rest_of_subs)
new_operands = (g,) + rest_of_ops
new_subscripts = new_input_subs + '->' + subs_wrt
return unbroadcast(anp.einsum(new_subscripts, *new_operands), result_meta)
else: # using (op0, sublist0, op1, sublist1, ..., sublistout) convention
if len(operands) % 2 == 0:
raise NotImplementedError("Need sublistout argument")
operands = list(operands)
rest_of_ops = [operands[-1]] + operands[:argnum] + \
operands[(argnum+2):-1] + [operands[argnum+1]]
return unbroadcast_einsum(anp.einsum(g, *rest_of_ops), result_meta, operands[argnum + 1])
return vjp
defvjp_argnum(anp.einsum, grad_einsum)
defvjp(anp.diagonal,
lambda ans, A, offset=0, axis1=0, axis2=1 :
lambda g: anp.make_diagonal(g, offset, axis1, axis2))
defvjp(anp.make_diagonal,
lambda ans, D, offset=0, axis1=0, axis2=1 :
lambda g: anp.diagonal(g, offset, axis1, axis2))
def match_complex(target, x):
target_iscomplex = anp.iscomplexobj(target)
x_iscomplex = anp.iscomplexobj(x)
if x_iscomplex and not target_iscomplex:
return anp.real(x)
elif not x_iscomplex and target_iscomplex:
return x + 0j
else:
return x
def unbroadcast(x, target_meta, broadcast_idx=0):
target_shape, target_ndim, dtype, target_iscomplex = target_meta
while anp.ndim(x) > target_ndim:
x = anp.sum(x, axis=broadcast_idx)
for axis, size in enumerate(target_shape):
if size == 1:
x = anp.sum(x, axis=axis, keepdims=True)
if anp.iscomplexobj(x) and not target_iscomplex:
x = anp.real(x)
return x
def unbroadcast_f(target, f):
target_meta = anp.metadata(target)
return lambda g: unbroadcast(f(g), target_meta)
def unbroadcast_einsum(x, target_meta, subscript):
if Ellipsis not in subscript:
return x
elif subscript[0] == Ellipsis:
return unbroadcast(x, target_meta, 0)
elif subscript[-1] == Ellipsis:
return unbroadcast(x, target_meta, -1)
else:
return unbroadcast(x, target_meta, subscript.index(Ellipsis))
def balanced_eq(x, z, y):
return (x == z) / (1.0 + (x == y))
def replace_zero(x, val):
return anp.where(x, x, val)
# ----- extra functions used internally -----
def array_from_args_gradmaker(argnum, ans, args, kwargs):
return lambda g: g[argnum-2]
defvjp_argnum(anp.array_from_args, array_from_args_gradmaker)
def array_from_scalar_or_array_gradmaker(ans, array_args, array_kwargs, scarray):
ndmin = array_kwargs.get('ndmin', 0)
scarray_ndim = anp.ndim(scarray)
if ndmin > scarray_ndim:
return lambda g: anp.squeeze(g, axis=tuple(range(ndmin - scarray_ndim)))
else:
return lambda g: g
defvjp(anp._array_from_scalar_or_array, array_from_scalar_or_array_gradmaker, argnums=(2,3))
@primitive
def untake(x, idx, vs):
if isinstance(idx, list) and (len(idx) == 0 or not isinstance(idx[0], slice)):
idx = onp.array(idx, dtype='int64')
def mut_add(A):
onp.add.at(A, idx, x)
return A
return SparseObject(vs, mut_add)
defvjp(func(ArrayBox.__getitem__), lambda ans, A, idx: lambda g: untake(g, idx, vspace(A)))
defvjp(untake, lambda ans, x, idx, _: lambda g: g[idx])
def _unpad(array, width):
if anp.isscalar(width):
width = [[width, width]]
elif anp.shape(width) == (1,):
width = [anp.concatenate((width, width))]
elif anp.shape(width) == (2,):
width = [width]
if anp.shape(width)[0] == 1:
width = anp.repeat(width, anp.ndim(array), 0)
idxs = tuple(slice(l, -u or None) for l, u in width)
return array[idxs]
def pad_vjp(ans, array, pad_width, mode, **kwargs):
assert mode == "constant", "Only constant mode padding is supported."
return lambda g: _unpad(g, pad_width)
defvjp(anp.pad, pad_vjp)
|