Spaces:
Paused
Paused
import logging | |
from contextlib import asynccontextmanager | |
import uvicorn | |
from app.config import CONFIG | |
from app.models import load_qa_pipeline, inference_qa # Custom functions for loading and inference | |
from app.schemas import QAQuery, QAResponse # Pydantic schema for QA input/output | |
from fastapi import FastAPI | |
from fastapi.encoders import jsonable_encoder | |
from fastapi.responses import JSONResponse | |
logger = logging.getLogger(__file__) | |
logger.info("App opened") | |
# Global variable to hold the QA model | |
qa_model = None | |
async def lifespan(app: FastAPI): | |
global qa_model | |
logger.info("Loading QA model") | |
qa_model = load_qa_pipeline(CONFIG.qa_model_path) # Load the QA model | |
logger.info("QA model loaded") | |
yield | |
# Clean up the model and release resources | |
qa_model = None | |
logger.info("QA model unloaded") | |
app = FastAPI(lifespan=lifespan) | |
# Route for QA | |
async def question_answering(q: QAQuery): | |
""" | |
Endpoint for question-answering. | |
Accepts a context and a question, and returns the answer. | |
""" | |
if qa_model is None: | |
return JSONResponse( | |
content={"error": "QA model is not loaded"}, | |
status_code=503, | |
) | |
# Perform inference | |
answer = inference_qa(qa_model, context=q.context, question=q.question) | |
return JSONResponse(content={"answer": answer}) | |
# Health check route | |
async def health(): | |
return {"status": "healthy"} | |
if __name__ == "__main__": | |
uvicorn.run( | |
"app.main:app", host="0.0.0.0", port=CONFIG.AIP_HTTP_PORT, reload=CONFIG.DEBUG | |
) |