Chatmodel / app /main.py
Gowtham122's picture
Rename app/app.py to app/main.py
1f183f7 verified
import logging
from contextlib import asynccontextmanager
import uvicorn
from app.config import CONFIG
from app.models import load_qa_pipeline, inference_qa # Custom functions for loading and inference
from app.schemas import QAQuery, QAResponse # Pydantic schema for QA input/output
from fastapi import FastAPI
from fastapi.encoders import jsonable_encoder
from fastapi.responses import JSONResponse
logger = logging.getLogger(__file__)
logger.info("App opened")
# Global variable to hold the QA model
qa_model = None
@asynccontextmanager
async def lifespan(app: FastAPI):
global qa_model
logger.info("Loading QA model")
qa_model = load_qa_pipeline(CONFIG.qa_model_path) # Load the QA model
logger.info("QA model loaded")
yield
# Clean up the model and release resources
qa_model = None
logger.info("QA model unloaded")
app = FastAPI(lifespan=lifespan)
# Route for QA
@app.post("/qa", response_model=QAResponse)
async def question_answering(q: QAQuery):
"""
Endpoint for question-answering.
Accepts a context and a question, and returns the answer.
"""
if qa_model is None:
return JSONResponse(
content={"error": "QA model is not loaded"},
status_code=503,
)
# Perform inference
answer = inference_qa(qa_model, context=q.context, question=q.question)
return JSONResponse(content={"answer": answer})
# Health check route
@app.get(CONFIG.AIP_HEALTH_ROUTE, status_code=200)
async def health():
return {"status": "healthy"}
if __name__ == "__main__":
uvicorn.run(
"app.main:app", host="0.0.0.0", port=CONFIG.AIP_HTTP_PORT, reload=CONFIG.DEBUG
)