Spaces:
Paused
Paused
Update app/models.py
Browse files- app/models.py +9 -10
app/models.py
CHANGED
@@ -31,21 +31,20 @@ class DataLocation(BaseModel):
|
|
31 |
"""
|
32 |
if not os.path.exists(self.local_path):
|
33 |
if self.cloud_uri is not None:
|
34 |
-
logger.warning(f"Downloading model from
|
35 |
-
# Implement cloud download logic here if needed
|
36 |
-
else:
|
37 |
-
logger.info(f"Downloading model from Hugging Face to: {self.local_path}")
|
38 |
# Download from Hugging Face
|
39 |
tokenizer = AutoTokenizer.from_pretrained(
|
40 |
-
self.cloud_uri
|
41 |
)
|
42 |
model = AlbertForQuestionAnswering.from_pretrained(
|
43 |
-
self.cloud_uri
|
44 |
)
|
45 |
# Save the model and tokenizer locally
|
46 |
tokenizer.save_pretrained(self.local_path)
|
47 |
model.save_pretrained(self.local_path)
|
48 |
logger.info(f"Model saved to: {self.local_path}")
|
|
|
|
|
49 |
return self.local_path
|
50 |
|
51 |
# Define the model location
|
@@ -64,16 +63,16 @@ class QAModel:
|
|
64 |
self.tokenizer = None
|
65 |
self.model = None
|
66 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
67 |
-
self.
|
68 |
|
69 |
-
def
|
70 |
"""
|
71 |
Load the tokenizer and model.
|
72 |
"""
|
73 |
# Ensure the model is downloaded
|
74 |
model_path = MODEL_LOCATION.exists_or_download()
|
75 |
|
76 |
-
# Load the tokenizer and model
|
77 |
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
|
78 |
self.model = AlbertForQuestionAnswering.from_pretrained(model_path).to(self.device)
|
79 |
logger.info(f"Loaded QA model: {self.model_name}")
|
@@ -114,7 +113,7 @@ def load_qa_pipeline():
|
|
114 |
Load the QA model and tokenizer.
|
115 |
"""
|
116 |
global qa_model
|
117 |
-
qa_model = QAModel()
|
118 |
return qa_model
|
119 |
|
120 |
def inference_qa(qa_pipeline, context: str, question: str):
|
|
|
31 |
"""
|
32 |
if not os.path.exists(self.local_path):
|
33 |
if self.cloud_uri is not None:
|
34 |
+
logger.warning(f"Downloading model from Hugging Face: {self.cloud_uri}")
|
|
|
|
|
|
|
35 |
# Download from Hugging Face
|
36 |
tokenizer = AutoTokenizer.from_pretrained(
|
37 |
+
self.cloud_uri, use_auth_token=AUTH_TOKEN
|
38 |
)
|
39 |
model = AlbertForQuestionAnswering.from_pretrained(
|
40 |
+
self.cloud_uri, use_auth_token=AUTH_TOKEN
|
41 |
)
|
42 |
# Save the model and tokenizer locally
|
43 |
tokenizer.save_pretrained(self.local_path)
|
44 |
model.save_pretrained(self.local_path)
|
45 |
logger.info(f"Model saved to: {self.local_path}")
|
46 |
+
else:
|
47 |
+
raise ValueError(f"Model not found locally and no cloud URI provided: {self.local_path}")
|
48 |
return self.local_path
|
49 |
|
50 |
# Define the model location
|
|
|
63 |
self.tokenizer = None
|
64 |
self.model = None
|
65 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
66 |
+
self._load_model() # Call the method to load the model and tokenizer
|
67 |
|
68 |
+
def _load_model(self):
|
69 |
"""
|
70 |
Load the tokenizer and model.
|
71 |
"""
|
72 |
# Ensure the model is downloaded
|
73 |
model_path = MODEL_LOCATION.exists_or_download()
|
74 |
|
75 |
+
# Load the tokenizer and model from the local path
|
76 |
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
|
77 |
self.model = AlbertForQuestionAnswering.from_pretrained(model_path).to(self.device)
|
78 |
logger.info(f"Loaded QA model: {self.model_name}")
|
|
|
113 |
Load the QA model and tokenizer.
|
114 |
"""
|
115 |
global qa_model
|
116 |
+
qa_model = QAModel() # This will automatically call `_load_model` during initialization
|
117 |
return qa_model
|
118 |
|
119 |
def inference_qa(qa_pipeline, context: str, question: str):
|