Spaces:
Runtime error
Runtime error
| # Copyright 2022-2023 Xiaomi Corp. (authors: Fangjun Kuang) | |
| # | |
| # See LICENSE for clarification regarding multiple authors | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from functools import lru_cache | |
| import sherpa_onnx | |
| from huggingface_hub import hf_hub_download | |
| sample_rate = 16000 | |
| def _get_nn_model_filename( | |
| repo_id: str, | |
| filename: str, | |
| subfolder: str = "exp", | |
| ) -> str: | |
| nn_model_filename = hf_hub_download( | |
| repo_id=repo_id, | |
| filename=filename, | |
| subfolder=subfolder, | |
| ) | |
| return nn_model_filename | |
| get_file = _get_nn_model_filename | |
| def _get_bpe_model_filename( | |
| repo_id: str, | |
| filename: str = "bpe.model", | |
| subfolder: str = "data/lang_bpe_500", | |
| ) -> str: | |
| bpe_model_filename = hf_hub_download( | |
| repo_id=repo_id, | |
| filename=filename, | |
| subfolder=subfolder, | |
| ) | |
| return bpe_model_filename | |
| def _get_token_filename( | |
| repo_id: str, | |
| filename: str = "tokens.txt", | |
| subfolder: str = "data/lang_char", | |
| ) -> str: | |
| token_filename = hf_hub_download( | |
| repo_id=repo_id, | |
| filename=filename, | |
| subfolder=subfolder, | |
| ) | |
| return token_filename | |
| def _get_whisper_model(repo_id: str) -> sherpa_onnx.OfflineRecognizer: | |
| name = repo_id.split("-")[1] | |
| assert name in ("tiny.en", "base.en", "small.en", "medium.en"), repo_id | |
| full_repo_id = "csukuangfj/sherpa-onnx-whisper-" + name | |
| encoder = _get_nn_model_filename( | |
| repo_id=full_repo_id, | |
| filename=f"{name}-encoder.int8.onnx", | |
| subfolder=".", | |
| ) | |
| decoder = _get_nn_model_filename( | |
| repo_id=full_repo_id, | |
| filename=f"{name}-decoder.int8.onnx", | |
| subfolder=".", | |
| ) | |
| tokens = _get_token_filename( | |
| repo_id=full_repo_id, subfolder=".", filename=f"{name}-tokens.txt" | |
| ) | |
| recognizer = sherpa_onnx.OfflineRecognizer.from_whisper( | |
| encoder=encoder, | |
| decoder=decoder, | |
| tokens=tokens, | |
| num_threads=2, | |
| ) | |
| return recognizer | |
| def _get_paraformer_zh_pre_trained_model(repo_id: str) -> sherpa_onnx.OfflineRecognizer: | |
| assert repo_id in [ | |
| "csukuangfj/sherpa-onnx-paraformer-zh-2023-03-28", | |
| ], repo_id | |
| nn_model = _get_nn_model_filename( | |
| repo_id=repo_id, | |
| filename="model.int8.onnx", | |
| subfolder=".", | |
| ) | |
| tokens = _get_token_filename(repo_id=repo_id, subfolder=".") | |
| recognizer = sherpa_onnx.OfflineRecognizer.from_paraformer( | |
| paraformer=nn_model, | |
| tokens=tokens, | |
| num_threads=2, | |
| sample_rate=sample_rate, | |
| feature_dim=80, | |
| decoding_method="greedy_search", | |
| debug=False, | |
| ) | |
| return recognizer | |
| def _get_russian_pre_trained_model(repo_id: str) -> sherpa_onnx.OfflineRecognizer: | |
| assert repo_id in ( | |
| "alphacep/vosk-model-ru", | |
| "alphacep/vosk-model-small-ru", | |
| ), repo_id | |
| if repo_id == "alphacep/vosk-model-ru": | |
| model_dir = "am-onnx" | |
| elif repo_id == "alphacep/vosk-model-small-ru": | |
| model_dir = "am" | |
| encoder_model = _get_nn_model_filename( | |
| repo_id=repo_id, | |
| filename="encoder.onnx", | |
| subfolder=model_dir, | |
| ) | |
| decoder_model = _get_nn_model_filename( | |
| repo_id=repo_id, | |
| filename="decoder.onnx", | |
| subfolder=model_dir, | |
| ) | |
| joiner_model = _get_nn_model_filename( | |
| repo_id=repo_id, | |
| filename="joiner.onnx", | |
| subfolder=model_dir, | |
| ) | |
| tokens = _get_token_filename(repo_id=repo_id, subfolder="lang") | |
| recognizer = sherpa_onnx.OfflineRecognizer.from_transducer( | |
| tokens=tokens, | |
| encoder=encoder_model, | |
| decoder=decoder_model, | |
| joiner=joiner_model, | |
| num_threads=2, | |
| sample_rate=16000, | |
| feature_dim=80, | |
| decoding_method="greedy_search", | |
| ) | |
| return recognizer | |
| def get_vad() -> sherpa_onnx.VoiceActivityDetector: | |
| vad_model = _get_nn_model_filename( | |
| repo_id="csukuangfj/vad", | |
| filename="silero_vad.onnx", | |
| subfolder=".", | |
| ) | |
| config = sherpa_onnx.VadModelConfig() | |
| config.silero_vad.model = vad_model | |
| config.silero_vad.min_silence_duration = 0.15 | |
| config.silero_vad.min_speech_duration = 0.25 | |
| config.sample_rate = sample_rate | |
| vad = sherpa_onnx.VoiceActivityDetector( | |
| config, | |
| buffer_size_in_seconds=180, | |
| ) | |
| return vad | |
| def get_pretrained_model(repo_id: str) -> sherpa_onnx.OfflineRecognizer: | |
| if repo_id in chinese_models: | |
| return chinese_models[repo_id](repo_id) | |
| elif repo_id in english_models: | |
| return english_models[repo_id](repo_id) | |
| elif repo_id in chinese_english_mixed_models: | |
| return chinese_english_mixed_models[repo_id](repo_id) | |
| elif repo_id in russian_models: | |
| return russian_models[repo_id](repo_id) | |
| else: | |
| raise ValueError(f"Unsupported repo_id: {repo_id}") | |
| def _get_wenetspeech_pre_trained_model(repo_id): | |
| assert repo_id in ( | |
| "csukuangfj/sherpa-onnx-conformer-zh-stateless2-2023-05-23", | |
| ), repo_id | |
| encoder_model = _get_nn_model_filename( | |
| repo_id=repo_id, | |
| filename="encoder-epoch-99-avg-1.onnx", | |
| subfolder=".", | |
| ) | |
| decoder_model = _get_nn_model_filename( | |
| repo_id=repo_id, | |
| filename="decoder-epoch-99-avg-1.onnx", | |
| subfolder=".", | |
| ) | |
| joiner_model = _get_nn_model_filename( | |
| repo_id=repo_id, | |
| filename="joiner-epoch-99-avg-1.onnx", | |
| subfolder=".", | |
| ) | |
| tokens = _get_token_filename(repo_id=repo_id, subfolder=".") | |
| recognizer = sherpa_onnx.OfflineRecognizer.from_transducer( | |
| tokens=tokens, | |
| encoder=encoder_model, | |
| decoder=decoder_model, | |
| joiner=joiner_model, | |
| num_threads=2, | |
| sample_rate=16000, | |
| feature_dim=80, | |
| decoding_method="greedy_search", | |
| ) | |
| return recognizer | |
| def _get_multi_zh_hans_pre_trained_model(repo_id): | |
| assert repo_id in ("zrjin/sherpa-onnx-zipformer-multi-zh-hans-2023-9-2",), repo_id | |
| encoder_model = _get_nn_model_filename( | |
| repo_id=repo_id, | |
| filename="encoder-epoch-20-avg-1.onnx", | |
| subfolder=".", | |
| ) | |
| decoder_model = _get_nn_model_filename( | |
| repo_id=repo_id, | |
| filename="decoder-epoch-20-avg-1.onnx", | |
| subfolder=".", | |
| ) | |
| joiner_model = _get_nn_model_filename( | |
| repo_id=repo_id, | |
| filename="joiner-epoch-20-avg-1.onnx", | |
| subfolder=".", | |
| ) | |
| tokens = _get_token_filename(repo_id=repo_id, subfolder=".") | |
| recognizer = sherpa_onnx.OfflineRecognizer.from_transducer( | |
| tokens=tokens, | |
| encoder=encoder_model, | |
| decoder=decoder_model, | |
| joiner=joiner_model, | |
| num_threads=2, | |
| sample_rate=16000, | |
| feature_dim=80, | |
| decoding_method="greedy_search", | |
| ) | |
| return recognizer | |
| def _get_english_model(repo_id: str) -> sherpa_onnx.OfflineRecognizer: | |
| assert ( | |
| repo_id | |
| == "yfyeung/icefall-asr-multidataset-pruned_transducer_stateless7-2023-05-04" | |
| ), repo_id | |
| encoder_model = _get_nn_model_filename( | |
| repo_id=repo_id, | |
| filename="encoder-epoch-30-avg-4.onnx", | |
| subfolder="exp", | |
| ) | |
| decoder_model = _get_nn_model_filename( | |
| repo_id=repo_id, | |
| filename="decoder-epoch-30-avg-4.onnx", | |
| subfolder="exp", | |
| ) | |
| joiner_model = _get_nn_model_filename( | |
| repo_id=repo_id, | |
| filename="joiner-epoch-30-avg-4.onnx", | |
| subfolder="exp", | |
| ) | |
| tokens = _get_token_filename(repo_id=repo_id, subfolder="lang_bpe_500") | |
| recognizer = sherpa_onnx.OfflineRecognizer.from_transducer( | |
| tokens=tokens, | |
| encoder=encoder_model, | |
| decoder=decoder_model, | |
| joiner=joiner_model, | |
| num_threads=2, | |
| sample_rate=16000, | |
| feature_dim=80, | |
| decoding_method="greedy_search", | |
| ) | |
| return recognizer | |
| chinese_models = { | |
| "csukuangfj/sherpa-onnx-paraformer-zh-2023-03-28": _get_paraformer_zh_pre_trained_model, | |
| "csukuangfj/sherpa-onnx-conformer-zh-stateless2-2023-05-23": _get_wenetspeech_pre_trained_model, # noqa | |
| "zrjin/sherpa-onnx-zipformer-multi-zh-hans-2023-9-2": _get_multi_zh_hans_pre_trained_model, # noqa | |
| } | |
| english_models = { | |
| "whisper-tiny.en": _get_whisper_model, | |
| "whisper-base.en": _get_whisper_model, | |
| "whisper-small.en": _get_whisper_model, | |
| "whisper-distil-small.en": _get_whisper_model, | |
| "whisper-medium.en": _get_whisper_model, | |
| "whisper-distil-medium.en": _get_whisper_model, | |
| "yfyeung/icefall-asr-multidataset-pruned_transducer_stateless7-2023-05-04": _get_english_model, # noqa | |
| } | |
| chinese_english_mixed_models = { | |
| "csukuangfj/sherpa-onnx-paraformer-zh-2023-03-28": _get_paraformer_zh_pre_trained_model, | |
| } | |
| russian_models = { | |
| "alphacep/vosk-model-ru": _get_russian_pre_trained_model, | |
| "alphacep/vosk-model-small-ru": _get_russian_pre_trained_model, | |
| } | |
| language_to_models = { | |
| "Chinese+English": list(chinese_english_mixed_models.keys()), | |
| "Chinese": list(chinese_models.keys()), | |
| "English": list(english_models.keys()), | |
| "Russian": list(russian_models.keys()), | |
| } | |