Spaces:
Sleeping
Sleeping
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +347 -37
src/streamlit_app.py
CHANGED
|
@@ -1,40 +1,350 @@
|
|
| 1 |
-
import
|
| 2 |
import numpy as np
|
|
|
|
|
|
|
|
|
|
| 3 |
import pandas as pd
|
| 4 |
-
import streamlit as st
|
| 5 |
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
""
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
st.
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
import numpy as np
|
| 3 |
+
import matplotlib.pyplot as plt
|
| 4 |
+
from scipy.stats import norm
|
| 5 |
+
from scipy.optimize import minimize
|
| 6 |
import pandas as pd
|
|
|
|
| 7 |
|
| 8 |
+
# Set page config
|
| 9 |
+
st.set_page_config(page_title="Gaussian Distribution & Overfitting Demo", layout="wide")
|
| 10 |
+
|
| 11 |
+
st.title("Gaussian Distribution & Overfitting in ML")
|
| 12 |
+
st.markdown("Interactive demonstration of concepts from PRML Chapter 1")
|
| 13 |
+
|
| 14 |
+
# Sidebar for navigation
|
| 15 |
+
page = st.sidebar.selectbox("Select Demo",
|
| 16 |
+
["Gaussian Distribution Basics",
|
| 17 |
+
"Maximum Likelihood Bias",
|
| 18 |
+
"Polynomial Curve Fitting",
|
| 19 |
+
"Probabilistic Curve Fitting",
|
| 20 |
+
"Regularized Curve Fitting"])
|
| 21 |
+
|
| 22 |
+
if page == "Gaussian Distribution Basics":
|
| 23 |
+
st.header("1.2.4 The Gaussian Distribution")
|
| 24 |
+
|
| 25 |
+
col1, col2 = st.columns(2)
|
| 26 |
+
|
| 27 |
+
with col1:
|
| 28 |
+
st.subheader("Parameters")
|
| 29 |
+
mu = st.slider("Mean (渭)", -5.0, 5.0, 0.0, 0.1)
|
| 30 |
+
sigma = st.slider("Standard Deviation (蟽)", 0.1, 5.0, 1.0, 0.1)
|
| 31 |
+
|
| 32 |
+
st.latex(r"N(x|\mu, \sigma^2) = \frac{1}{(2\pi\sigma^2)^{1/2}} \exp\left\{-\frac{1}{2\sigma^2}(x-\mu)^2\right\}")
|
| 33 |
+
|
| 34 |
+
with col2:
|
| 35 |
+
st.subheader("Gaussian Distribution Plot")
|
| 36 |
+
x = np.linspace(mu - 4*sigma, mu + 4*sigma, 1000)
|
| 37 |
+
y = norm.pdf(x, mu, sigma)
|
| 38 |
+
|
| 39 |
+
fig, ax = plt.subplots(figsize=(8, 6))
|
| 40 |
+
ax.plot(x, y, 'b-', linewidth=2, label=f'N({mu:.1f}, {sigma:.1f}虏)')
|
| 41 |
+
ax.fill_between(x, y, alpha=0.3)
|
| 42 |
+
ax.axvline(mu, color='r', linestyle='--', label=f'Mean = {mu:.1f}')
|
| 43 |
+
ax.axvline(mu - sigma, color='g', linestyle='--', alpha=0.5)
|
| 44 |
+
ax.axvline(mu + sigma, color='g', linestyle='--', alpha=0.5, label=f'卤蟽 = 卤{sigma:.1f}')
|
| 45 |
+
ax.set_xlabel('x')
|
| 46 |
+
ax.set_ylabel('p(x)')
|
| 47 |
+
ax.legend()
|
| 48 |
+
ax.grid(True, alpha=0.3)
|
| 49 |
+
st.pyplot(fig)
|
| 50 |
+
|
| 51 |
+
elif page == "Maximum Likelihood Bias":
|
| 52 |
+
st.header("Maximum Likelihood Bias in Variance Estimation")
|
| 53 |
+
st.markdown("This demonstrates how ML systematically underestimates the true variance")
|
| 54 |
+
|
| 55 |
+
col1, col2 = st.columns(2)
|
| 56 |
+
|
| 57 |
+
with col1:
|
| 58 |
+
st.subheader("Simulation Parameters")
|
| 59 |
+
true_mu = st.slider("True Mean", -2.0, 2.0, 0.0, 0.1)
|
| 60 |
+
true_sigma = st.slider("True Std Dev", 0.5, 3.0, 1.0, 0.1)
|
| 61 |
+
n_samples = st.slider("Number of Samples (N)", 2, 100, 10, 1)
|
| 62 |
+
n_experiments = st.slider("Number of Experiments", 100, 1000, 500, 100)
|
| 63 |
+
|
| 64 |
+
if st.button("Run Simulation"):
|
| 65 |
+
# Run multiple experiments
|
| 66 |
+
ml_means = []
|
| 67 |
+
ml_vars = []
|
| 68 |
+
unbiased_vars = []
|
| 69 |
+
|
| 70 |
+
for _ in range(n_experiments):
|
| 71 |
+
# Generate random samples
|
| 72 |
+
samples = np.random.normal(true_mu, true_sigma, n_samples)
|
| 73 |
+
|
| 74 |
+
# ML estimates
|
| 75 |
+
ml_mean = np.mean(samples)
|
| 76 |
+
ml_var = np.var(samples, ddof=0) # ML estimate
|
| 77 |
+
unbiased_var = np.var(samples, ddof=1) # Unbiased estimate
|
| 78 |
+
|
| 79 |
+
ml_means.append(ml_mean)
|
| 80 |
+
ml_vars.append(ml_var)
|
| 81 |
+
unbiased_vars.append(unbiased_var)
|
| 82 |
+
|
| 83 |
+
# Store results in session state
|
| 84 |
+
st.session_state.ml_means = ml_means
|
| 85 |
+
st.session_state.ml_vars = ml_vars
|
| 86 |
+
st.session_state.unbiased_vars = unbiased_vars
|
| 87 |
+
st.session_state.true_var = true_sigma**2
|
| 88 |
+
st.session_state.n_samples_used = n_samples
|
| 89 |
+
|
| 90 |
+
# Results section below parameters
|
| 91 |
+
if 'ml_vars' in st.session_state:
|
| 92 |
+
st.markdown("---") # Separator line
|
| 93 |
+
st.subheader("Results")
|
| 94 |
+
|
| 95 |
+
# Calculate averages
|
| 96 |
+
avg_ml_var = np.mean(st.session_state.ml_vars)
|
| 97 |
+
avg_unbiased_var = np.mean(st.session_state.unbiased_vars)
|
| 98 |
+
true_var = st.session_state.true_var
|
| 99 |
+
n_samples_used = st.session_state.n_samples_used
|
| 100 |
+
expected_ml_var = (n_samples_used - 1) / n_samples_used * true_var
|
| 101 |
+
|
| 102 |
+
# Display metrics
|
| 103 |
+
col3, col4, col5, col6 = st.columns(4)
|
| 104 |
+
with col3:
|
| 105 |
+
st.metric("Average ML Mean", f"{np.mean(st.session_state.ml_means):.4f}")
|
| 106 |
+
with col4:
|
| 107 |
+
st.metric("Average Unbiased Mean", f"{np.mean(st.session_state.unbiased_vars):.4f}")
|
| 108 |
+
with col5:
|
| 109 |
+
st.metric("True Mean", f"{true_mu:.4f}")
|
| 110 |
+
with col6:
|
| 111 |
+
st.metric("Expected ML Variance", f"{expected_ml_var:.4f}",
|
| 112 |
+
f"{(expected_ml_var - true_var) / true_var * 100:.1f}%")
|
| 113 |
+
|
| 114 |
+
# Bias factor
|
| 115 |
+
st.info(f"Bias Factor: (N-1)/N = {n_samples_used-1}/{n_samples_used} = {(n_samples_used-1)/n_samples_used:.3f}")
|
| 116 |
+
|
| 117 |
+
with col2:
|
| 118 |
+
if 'ml_vars' in st.session_state:
|
| 119 |
+
st.subheader("Variance Distribution")
|
| 120 |
+
|
| 121 |
+
# Get values for plotting
|
| 122 |
+
true_var = st.session_state.true_var
|
| 123 |
+
n_samples_used = st.session_state.n_samples_used
|
| 124 |
+
expected_ml_var = (n_samples_used - 1) / n_samples_used * true_var
|
| 125 |
+
|
| 126 |
+
# Histogram
|
| 127 |
+
fig, ax = plt.subplots(figsize=(10, 8))
|
| 128 |
+
ax.hist(st.session_state.ml_vars, bins=30, alpha=0.5, label='ML Variance', density=True)
|
| 129 |
+
ax.hist(st.session_state.unbiased_vars, bins=30, alpha=0.5, label='Unbiased Variance', density=True)
|
| 130 |
+
ax.axvline(true_var, color='r', linestyle='--', linewidth=2, label='True Variance')
|
| 131 |
+
ax.axvline(expected_ml_var, color='g', linestyle='--', linewidth=2, label='Expected ML Variance')
|
| 132 |
+
ax.set_xlabel('Variance Estimate', fontsize=12)
|
| 133 |
+
ax.set_ylabel('Density', fontsize=12)
|
| 134 |
+
ax.legend(fontsize=11)
|
| 135 |
+
ax.grid(True, alpha=0.3)
|
| 136 |
+
ax.set_title(f'Distribution of Variance Estimates (N={n_samples_used})', fontsize=14)
|
| 137 |
+
st.pyplot(fig)
|
| 138 |
+
|
| 139 |
+
elif page == "Polynomial Curve Fitting":
|
| 140 |
+
st.header("Polynomial Curve Fitting and Overfitting")
|
| 141 |
+
|
| 142 |
+
# Generate true function
|
| 143 |
+
def true_function(x):
|
| 144 |
+
return np.sin(2 * np.pi * x)
|
| 145 |
+
|
| 146 |
+
col1, col2 = st.columns([1, 2])
|
| 147 |
+
|
| 148 |
+
with col1:
|
| 149 |
+
st.subheader("Parameters")
|
| 150 |
+
n_data_points = st.slider("Number of Data Points", 5, 50, 15, 1)
|
| 151 |
+
noise_level = st.slider("Noise Level", 0.0, 0.5, 0.2, 0.05)
|
| 152 |
+
polynomial_degree = st.slider("Polynomial Degree (M)", 0, 15, 3, 1)
|
| 153 |
+
|
| 154 |
+
if st.button("Generate New Data"):
|
| 155 |
+
np.random.seed(None) # Random seed
|
| 156 |
+
x_train = np.random.uniform(0, 1, n_data_points)
|
| 157 |
+
y_train = true_function(x_train) + np.random.normal(0, noise_level, n_data_points)
|
| 158 |
+
st.session_state.x_train = x_train
|
| 159 |
+
st.session_state.y_train = y_train
|
| 160 |
+
|
| 161 |
+
# Initialize data if not exists
|
| 162 |
+
if 'x_train' not in st.session_state:
|
| 163 |
+
np.random.seed(42)
|
| 164 |
+
x_train = np.random.uniform(0, 1, n_data_points)
|
| 165 |
+
y_train = true_function(x_train) + np.random.normal(0, noise_level, n_data_points)
|
| 166 |
+
st.session_state.x_train = x_train
|
| 167 |
+
st.session_state.y_train = y_train
|
| 168 |
+
|
| 169 |
+
with col2:
|
| 170 |
+
st.subheader("Polynomial Fit")
|
| 171 |
+
|
| 172 |
+
# Fit polynomial
|
| 173 |
+
X_train = np.vander(st.session_state.x_train, polynomial_degree + 1, increasing=True)
|
| 174 |
+
w = np.linalg.lstsq(X_train, st.session_state.y_train, rcond=None)[0]
|
| 175 |
+
|
| 176 |
+
# Plot
|
| 177 |
+
x_plot = np.linspace(0, 1, 200)
|
| 178 |
+
X_plot = np.vander(x_plot, polynomial_degree + 1, increasing=True)
|
| 179 |
+
y_pred = X_plot @ w
|
| 180 |
+
y_true = true_function(x_plot)
|
| 181 |
+
|
| 182 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
| 183 |
+
ax.plot(x_plot, y_true, 'g-', linewidth=2, label='True Function')
|
| 184 |
+
ax.plot(x_plot, y_pred, 'r-', linewidth=2, label=f'Polynomial (M={polynomial_degree})')
|
| 185 |
+
ax.scatter(st.session_state.x_train, st.session_state.y_train,
|
| 186 |
+
c='blue', s=50, alpha=0.8, edgecolors='black', label='Training Data')
|
| 187 |
+
ax.set_xlabel('x')
|
| 188 |
+
ax.set_ylabel('y')
|
| 189 |
+
ax.set_ylim(-1.5, 1.5)
|
| 190 |
+
ax.legend()
|
| 191 |
+
ax.grid(True, alpha=0.3)
|
| 192 |
+
ax.set_title(f'Polynomial Degree M = {polynomial_degree}')
|
| 193 |
+
st.pyplot(fig)
|
| 194 |
+
|
| 195 |
+
# Calculate training error
|
| 196 |
+
y_train_pred = X_train @ w
|
| 197 |
+
train_rmse = np.sqrt(np.mean((st.session_state.y_train - y_train_pred)**2))
|
| 198 |
+
st.metric("Training RMSE", f"{train_rmse:.4f}")
|
| 199 |
+
|
| 200 |
+
elif page == "Probabilistic Curve Fitting":
|
| 201 |
+
st.header("Probabilistic View of Curve Fitting")
|
| 202 |
+
st.latex(r"p(t|x,\mathbf{w},\beta) = N(t|y(x,\mathbf{w}), \beta^{-1})")
|
| 203 |
+
|
| 204 |
+
col1, col2 = st.columns([1, 2])
|
| 205 |
+
|
| 206 |
+
with col1:
|
| 207 |
+
st.subheader("Parameters")
|
| 208 |
+
n_data_points = st.slider("Number of Data Points", 5, 50, 20, 1)
|
| 209 |
+
true_noise = st.slider("True Noise (蟽)", 0.1, 0.5, 0.2, 0.05)
|
| 210 |
+
polynomial_degree = st.slider("Polynomial Degree", 0, 9, 3, 1)
|
| 211 |
+
show_uncertainty = st.checkbox("Show Predictive Distribution", True)
|
| 212 |
+
|
| 213 |
+
if st.button("Generate Data"):
|
| 214 |
+
np.random.seed(None)
|
| 215 |
+
x_train = np.random.uniform(0, 1, n_data_points)
|
| 216 |
+
y_train = np.sin(2 * np.pi * x_train) + np.random.normal(0, true_noise, n_data_points)
|
| 217 |
+
st.session_state.prob_x_train = x_train
|
| 218 |
+
st.session_state.prob_y_train = y_train
|
| 219 |
+
|
| 220 |
+
# Initialize data
|
| 221 |
+
if 'prob_x_train' not in st.session_state:
|
| 222 |
+
np.random.seed(42)
|
| 223 |
+
x_train = np.random.uniform(0, 1, n_data_points)
|
| 224 |
+
y_train = np.sin(2 * np.pi * x_train) + np.random.normal(0, true_noise, n_data_points)
|
| 225 |
+
st.session_state.prob_x_train = x_train
|
| 226 |
+
st.session_state.prob_y_train = y_train
|
| 227 |
+
|
| 228 |
+
with col2:
|
| 229 |
+
st.subheader("Maximum Likelihood Fit")
|
| 230 |
+
|
| 231 |
+
# Fit polynomial and estimate noise
|
| 232 |
+
X_train = np.vander(st.session_state.prob_x_train, polynomial_degree + 1, increasing=True)
|
| 233 |
+
w_ml = np.linalg.lstsq(X_train, st.session_state.prob_y_train, rcond=None)[0]
|
| 234 |
+
|
| 235 |
+
# Estimate noise variance (beta^-1)
|
| 236 |
+
y_train_pred = X_train @ w_ml
|
| 237 |
+
residuals = st.session_state.prob_y_train - y_train_pred
|
| 238 |
+
sigma_ml = np.sqrt(np.mean(residuals**2))
|
| 239 |
+
beta_ml = 1 / (sigma_ml**2)
|
| 240 |
+
|
| 241 |
+
# Plot
|
| 242 |
+
x_plot = np.linspace(0, 1, 200)
|
| 243 |
+
X_plot = np.vander(x_plot, polynomial_degree + 1, increasing=True)
|
| 244 |
+
y_mean = X_plot @ w_ml
|
| 245 |
+
|
| 246 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
| 247 |
+
|
| 248 |
+
# Plot uncertainty bands if requested
|
| 249 |
+
if show_uncertainty:
|
| 250 |
+
y_std = np.sqrt(1 / beta_ml)
|
| 251 |
+
ax.fill_between(x_plot, y_mean - 2*y_std, y_mean + 2*y_std,
|
| 252 |
+
alpha=0.3, color='red', label='卤2蟽 predictive')
|
| 253 |
+
|
| 254 |
+
ax.plot(x_plot, np.sin(2 * np.pi * x_plot), 'g-', linewidth=2, label='True Function')
|
| 255 |
+
ax.plot(x_plot, y_mean, 'r-', linewidth=2, label=f'ML Fit (M={polynomial_degree})')
|
| 256 |
+
ax.scatter(st.session_state.prob_x_train, st.session_state.prob_y_train,
|
| 257 |
+
c='blue', s=50, alpha=0.8, edgecolors='black', label='Training Data')
|
| 258 |
+
|
| 259 |
+
ax.set_xlabel('x')
|
| 260 |
+
ax.set_ylabel('t')
|
| 261 |
+
ax.legend()
|
| 262 |
+
ax.grid(True, alpha=0.3)
|
| 263 |
+
st.pyplot(fig)
|
| 264 |
+
|
| 265 |
+
# Display estimated parameters
|
| 266 |
+
col3, col4 = st.columns(2)
|
| 267 |
+
with col3:
|
| 268 |
+
st.metric("ML Noise Estimate (蟽)", f"{sigma_ml:.3f}")
|
| 269 |
+
with col4:
|
| 270 |
+
st.metric("True Noise (蟽)", f"{true_noise:.3f}")
|
| 271 |
+
|
| 272 |
+
elif page == "Regularized Curve Fitting":
|
| 273 |
+
st.header("Regularized Curve Fitting (MAP Estimation)")
|
| 274 |
+
st.latex(r"E(\mathbf{w}) = \frac{\beta}{2}\sum_{n=1}^{N}\{y(x_n,\mathbf{w})-t_n\}^2 + \frac{\alpha}{2}\mathbf{w}^T\mathbf{w}")
|
| 275 |
+
|
| 276 |
+
col1, col2 = st.columns([1, 2])
|
| 277 |
+
|
| 278 |
+
with col1:
|
| 279 |
+
st.subheader("Parameters")
|
| 280 |
+
n_data_points = st.slider("Data Points", 10, 50, 15, 1)
|
| 281 |
+
noise_level = st.slider("Noise", 0.1, 0.5, 0.3, 0.05)
|
| 282 |
+
polynomial_degree = st.slider("Degree (M)", 0, 15, 9, 1)
|
| 283 |
+
log_lambda = st.slider("log鈧佲個(位)", -8.0, 2.0, -3.0, 0.5)
|
| 284 |
+
regularization = 10**log_lambda
|
| 285 |
+
|
| 286 |
+
if st.button("New Data"):
|
| 287 |
+
np.random.seed(None)
|
| 288 |
+
x_train = np.random.uniform(0, 1, n_data_points)
|
| 289 |
+
y_train = np.sin(2 * np.pi * x_train) + np.random.normal(0, noise_level, n_data_points)
|
| 290 |
+
st.session_state.reg_x_train = x_train
|
| 291 |
+
st.session_state.reg_y_train = y_train
|
| 292 |
+
|
| 293 |
+
# Initialize
|
| 294 |
+
if 'reg_x_train' not in st.session_state:
|
| 295 |
+
np.random.seed(42)
|
| 296 |
+
x_train = np.random.uniform(0, 1, n_data_points)
|
| 297 |
+
y_train = np.sin(2 * np.pi * x_train) + np.random.normal(0, noise_level, n_data_points)
|
| 298 |
+
st.session_state.reg_x_train = x_train
|
| 299 |
+
st.session_state.reg_y_train = y_train
|
| 300 |
+
|
| 301 |
+
with col2:
|
| 302 |
+
st.subheader("Regularized Fit")
|
| 303 |
+
|
| 304 |
+
# Fit with regularization
|
| 305 |
+
X_train = np.vander(st.session_state.reg_x_train, polynomial_degree + 1, increasing=True)
|
| 306 |
+
|
| 307 |
+
# Ridge regression (L2 regularization)
|
| 308 |
+
XtX = X_train.T @ X_train
|
| 309 |
+
Xty = X_train.T @ st.session_state.reg_y_train
|
| 310 |
+
w_reg = np.linalg.solve(XtX + regularization * np.eye(polynomial_degree + 1), Xty)
|
| 311 |
+
|
| 312 |
+
# Plot
|
| 313 |
+
x_plot = np.linspace(0, 1, 200)
|
| 314 |
+
X_plot = np.vander(x_plot, polynomial_degree + 1, increasing=True)
|
| 315 |
+
y_pred = X_plot @ w_reg
|
| 316 |
+
|
| 317 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
| 318 |
+
ax.plot(x_plot, np.sin(2 * np.pi * x_plot), 'g-', linewidth=2, label='True Function')
|
| 319 |
+
ax.plot(x_plot, y_pred, 'r-', linewidth=2, label=f'Regularized (位={regularization:.1e})')
|
| 320 |
+
ax.scatter(st.session_state.reg_x_train, st.session_state.reg_y_train,
|
| 321 |
+
c='blue', s=50, alpha=0.8, edgecolors='black', label='Training Data')
|
| 322 |
+
ax.set_xlabel('x')
|
| 323 |
+
ax.set_ylabel('t')
|
| 324 |
+
ax.set_ylim(-1.5, 1.5)
|
| 325 |
+
ax.legend()
|
| 326 |
+
ax.grid(True, alpha=0.3)
|
| 327 |
+
ax.set_title(f'M = {polynomial_degree}, 位 = {regularization:.1e}')
|
| 328 |
+
st.pyplot(fig)
|
| 329 |
+
|
| 330 |
+
# Metrics
|
| 331 |
+
train_pred = X_train @ w_reg
|
| 332 |
+
train_rmse = np.sqrt(np.mean((st.session_state.reg_y_train - train_pred)**2))
|
| 333 |
+
weight_norm = np.linalg.norm(w_reg)
|
| 334 |
+
|
| 335 |
+
col3, col4 = st.columns(2)
|
| 336 |
+
with col3:
|
| 337 |
+
st.metric("Training RMSE", f"{train_rmse:.4f}")
|
| 338 |
+
with col4:
|
| 339 |
+
st.metric("||w||虏", f"{weight_norm:.2f}")
|
| 340 |
+
|
| 341 |
+
# Add information footer
|
| 342 |
+
st.markdown("---")
|
| 343 |
+
st.markdown("### Key Concepts Demonstrated:")
|
| 344 |
+
st.markdown("""
|
| 345 |
+
- **Gaussian Distribution**: Fundamental probability distribution with mean 渭 and variance 蟽虏
|
| 346 |
+
- **Maximum Likelihood Bias**: ML estimation systematically underestimates variance by factor (N-1)/N
|
| 347 |
+
- **Overfitting**: High-degree polynomials fit training data perfectly but generalize poorly
|
| 348 |
+
- **Probabilistic Curve Fitting**: View regression as estimating conditional distribution p(t|x)
|
| 349 |
+
- **Regularization**: Adding penalty term 伪||w||虏 prevents overfitting (equivalent to MAP with Gaussian prior)
|
| 350 |
+
""")
|