Commit
·
43515a8
1
Parent(s):
c831d35
Deploying RepoSnipy
Browse files- .gitattributes +1 -0
- .gitignore +163 -0
- LICENSE +21 -0
- README.md +96 -13
- app.py +442 -0
- assets/search.gif +3 -0
- data/SimilarityCal_model_NO1.pt +3 -0
- data/index.bin +3 -0
- data/index_test.bin +3 -0
- data/kmeans_model_scibert.pkl +3 -0
- data/pair_classifier.py +37 -0
- data/repo_clusters.json +0 -0
- data/repo_clusters_test.json +0 -0
- data/repo_doc.py +18 -0
- requirements.txt +12 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
*.gif filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
|
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Byte-compiled / optimized / DLL files
|
| 2 |
+
__pycache__/
|
| 3 |
+
*.py[cod]
|
| 4 |
+
*$py.class
|
| 5 |
+
|
| 6 |
+
# C extensions
|
| 7 |
+
*.so
|
| 8 |
+
|
| 9 |
+
# Distribution / packaging
|
| 10 |
+
.Python
|
| 11 |
+
build/
|
| 12 |
+
develop-eggs/
|
| 13 |
+
dist/
|
| 14 |
+
downloads/
|
| 15 |
+
eggs/
|
| 16 |
+
.eggs/
|
| 17 |
+
lib/
|
| 18 |
+
lib64/
|
| 19 |
+
parts/
|
| 20 |
+
sdist/
|
| 21 |
+
var/
|
| 22 |
+
wheels/
|
| 23 |
+
share/python-wheels/
|
| 24 |
+
*.egg-info/
|
| 25 |
+
.installed.cfg
|
| 26 |
+
*.egg
|
| 27 |
+
MANIFEST
|
| 28 |
+
|
| 29 |
+
# PyInstaller
|
| 30 |
+
# Usually these files are written by a python script from a template
|
| 31 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
| 32 |
+
*.manifest
|
| 33 |
+
*.spec
|
| 34 |
+
|
| 35 |
+
# Installer logs
|
| 36 |
+
pip-log.txt
|
| 37 |
+
pip-delete-this-directory.txt
|
| 38 |
+
|
| 39 |
+
# Unit test / coverage reports
|
| 40 |
+
htmlcov/
|
| 41 |
+
.tox/
|
| 42 |
+
.nox/
|
| 43 |
+
.coverage
|
| 44 |
+
.coverage.*
|
| 45 |
+
.cache
|
| 46 |
+
nosetests.xml
|
| 47 |
+
coverage.xml
|
| 48 |
+
*.cover
|
| 49 |
+
*.py,cover
|
| 50 |
+
.hypothesis/
|
| 51 |
+
.pytest_cache/
|
| 52 |
+
cover/
|
| 53 |
+
|
| 54 |
+
# Translations
|
| 55 |
+
*.mo
|
| 56 |
+
*.pot
|
| 57 |
+
|
| 58 |
+
# Django stuff:
|
| 59 |
+
*.log
|
| 60 |
+
local_settings.py
|
| 61 |
+
db.sqlite3
|
| 62 |
+
db.sqlite3-journal
|
| 63 |
+
|
| 64 |
+
# Flask stuff:
|
| 65 |
+
instance/
|
| 66 |
+
.webassets-cache
|
| 67 |
+
|
| 68 |
+
# Scrapy stuff:
|
| 69 |
+
.scrapy
|
| 70 |
+
|
| 71 |
+
# Sphinx documentation
|
| 72 |
+
docs/_build/
|
| 73 |
+
|
| 74 |
+
# PyBuilder
|
| 75 |
+
.pybuilder/
|
| 76 |
+
target/
|
| 77 |
+
|
| 78 |
+
# Jupyter Notebook
|
| 79 |
+
.ipynb_checkpoints
|
| 80 |
+
|
| 81 |
+
# IPython
|
| 82 |
+
profile_default/
|
| 83 |
+
ipython_config.py
|
| 84 |
+
|
| 85 |
+
# pyenv
|
| 86 |
+
# For a library or package, you might want to ignore these files since the code is
|
| 87 |
+
# intended to run in multiple environments; otherwise, check them in:
|
| 88 |
+
# .python-version
|
| 89 |
+
|
| 90 |
+
# pipenv
|
| 91 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
| 92 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
| 93 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
| 94 |
+
# install all needed dependencies.
|
| 95 |
+
#Pipfile.lock
|
| 96 |
+
|
| 97 |
+
# poetry
|
| 98 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
| 99 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
| 100 |
+
# commonly ignored for libraries.
|
| 101 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
| 102 |
+
#poetry.lock
|
| 103 |
+
|
| 104 |
+
# pdm
|
| 105 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
| 106 |
+
#pdm.lock
|
| 107 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
| 108 |
+
# in version control.
|
| 109 |
+
# https://pdm.fming.dev/#use-with-ide
|
| 110 |
+
.pdm.toml
|
| 111 |
+
|
| 112 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
| 113 |
+
__pypackages__/
|
| 114 |
+
|
| 115 |
+
# Celery stuff
|
| 116 |
+
celerybeat-schedule
|
| 117 |
+
celerybeat.pid
|
| 118 |
+
|
| 119 |
+
# SageMath parsed files
|
| 120 |
+
*.sage.py
|
| 121 |
+
|
| 122 |
+
# Environments
|
| 123 |
+
.env
|
| 124 |
+
.venv
|
| 125 |
+
env/
|
| 126 |
+
venv/
|
| 127 |
+
ENV/
|
| 128 |
+
env.bak/
|
| 129 |
+
venv.bak/
|
| 130 |
+
|
| 131 |
+
# Spyder project settings
|
| 132 |
+
.spyderproject
|
| 133 |
+
.spyproject
|
| 134 |
+
|
| 135 |
+
# Rope project settings
|
| 136 |
+
.ropeproject
|
| 137 |
+
|
| 138 |
+
# mkdocs documentation
|
| 139 |
+
/site
|
| 140 |
+
|
| 141 |
+
# mypy
|
| 142 |
+
.mypy_cache/
|
| 143 |
+
.dmypy.json
|
| 144 |
+
dmypy.json
|
| 145 |
+
|
| 146 |
+
# Pyre type checker
|
| 147 |
+
.pyre/
|
| 148 |
+
|
| 149 |
+
# pytype static type analyzer
|
| 150 |
+
.pytype/
|
| 151 |
+
|
| 152 |
+
# Cython debug symbols
|
| 153 |
+
cython_debug/
|
| 154 |
+
|
| 155 |
+
# PyCharm
|
| 156 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
| 157 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
| 158 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
| 159 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
| 160 |
+
#.idea/
|
| 161 |
+
|
| 162 |
+
# Streamlit configs
|
| 163 |
+
.streamlit/
|
LICENSE
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
MIT License
|
| 2 |
+
|
| 3 |
+
Copyright (c) 2024 RepoSnipy
|
| 4 |
+
|
| 5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
| 6 |
+
of this software and associated documentation files (the "Software"), to deal
|
| 7 |
+
in the Software without restriction, including without limitation the rights
|
| 8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
| 9 |
+
copies of the Software, and to permit persons to whom the Software is
|
| 10 |
+
furnished to do so, subject to the following conditions:
|
| 11 |
+
|
| 12 |
+
The above copyright notice and this permission notice shall be included in all
|
| 13 |
+
copies or substantial portions of the Software.
|
| 14 |
+
|
| 15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
| 16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
| 17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
| 18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
| 19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
| 20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
| 21 |
+
SOFTWARE.
|
README.md
CHANGED
|
@@ -1,13 +1,96 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# RepoSnipy 🐉
|
| 2 |
+
Neural search engine for discovering semantically similar Python repositories on GitHub.
|
| 3 |
+
|
| 4 |
+
## Demo
|
| 5 |
+
**TODO --- Update the gif file!!!**
|
| 6 |
+
|
| 7 |
+
Searching an indexed repository:
|
| 8 |
+
|
| 9 |
+

|
| 10 |
+
|
| 11 |
+
## About
|
| 12 |
+
|
| 13 |
+
RepoSnipy is a neural search engine built with [streamlit](https://github.com/streamlit/streamlit) and [docarray](https://github.com/docarray/docarray). You can query a public Python repository hosted on GitHub and find popular repositories that are semantically similar to it.
|
| 14 |
+
|
| 15 |
+
Compared to the previous generation of [RepoSnipy](https://github.com/RepoAnalysis/RepoSnipy), the latest version has such new features below:
|
| 16 |
+
* It uses the [RepoSim4Py](https://github.com/RepoMining/RepoSim4Py), which is based on [RepoSim4Py pipeline](https://huggingface.co/Henry65/RepoSim4Py), to create multi-level embeddings for Python repositories.
|
| 17 |
+
* Multi-level embeddings --- code, docstring, readme, requirement, and repository.
|
| 18 |
+
* It uses the [SciBERT](https://arxiv.org/abs/1903.10676) model to analyse repository topics and to generate embeddings for topics.
|
| 19 |
+
* Transfer multiple topics into one cluster --- it uses a [KMeans](data/kmeans_model_scibert.pkl) model to analyse topic embeddings and to cluster repositories based on topics.
|
| 20 |
+
* **SimilarityCal --- TODO update!!!**
|
| 21 |
+
|
| 22 |
+
We have created a [vector dataset](data/index.bin) (stored as docarray index) of approximate 9700 GitHub Python repositories that has license and over 300 stars by the time of February 2024. The accordingly generated clusters were putted in a [json dataset](data/repo_clusters.json) (stored repo-cluster as key-values).
|
| 23 |
+
|
| 24 |
+
## Installation
|
| 25 |
+
|
| 26 |
+
### Prerequisites
|
| 27 |
+
* Python 3.11
|
| 28 |
+
* pip
|
| 29 |
+
|
| 30 |
+
### Installation with code
|
| 31 |
+
We recommend to install first a [conda](https://conda.io/projects/conda/en/latest/index.html) environment with `python 3.11`. Then, you can download the repository. See below:
|
| 32 |
+
```bash
|
| 33 |
+
conda create --name py311 python=3.11
|
| 34 |
+
conda activate py311
|
| 35 |
+
git clone https://github.com/RepoMining/RepoSnipy
|
| 36 |
+
```
|
| 37 |
+
After downloading the repository, you need install the required package. **Make sure the python and pip you used are both from conda environment!**
|
| 38 |
+
For the following:
|
| 39 |
+
```bash
|
| 40 |
+
cd RepoSnipy
|
| 41 |
+
pip install -r requirements.txt
|
| 42 |
+
```
|
| 43 |
+
|
| 44 |
+
### Usage
|
| 45 |
+
Then run the app on your local machine using:
|
| 46 |
+
```bash
|
| 47 |
+
streamlit run app.py
|
| 48 |
+
```
|
| 49 |
+
or
|
| 50 |
+
```bash
|
| 51 |
+
python -m streamlit run app.py
|
| 52 |
+
```
|
| 53 |
+
Importantly, to avoid unnecessary conflict (like version conflict, or package location conflict), you should ensure that **streamlit you used is from conda environment**!
|
| 54 |
+
|
| 55 |
+
### Dataset
|
| 56 |
+
As mentioned above, RepoSnipy needs [vector](data/index.bin), [json](data/repo_clusters.json) dataset and [KMeans](data/kmeans_model_scibert.pkl) model when you start up it. For your convenience, we have uploaded them in the folder [data](data) of this repository.
|
| 57 |
+
|
| 58 |
+
To provide research-oriented meaning, we have provided the following scripts for you to recreate them:
|
| 59 |
+
```bash
|
| 60 |
+
cd data
|
| 61 |
+
python create_index.py # For creating vector dataset (binary files)
|
| 62 |
+
python generate_cluster.py # For creating useful cluster model and information (KMeans model and json files representing repo-clusters)
|
| 63 |
+
```
|
| 64 |
+
|
| 65 |
+
More details can refer to these two scripts above. When you run scripts above, you will get the following files:
|
| 66 |
+
1. Generated by [create_index.py](data/create_index.py):
|
| 67 |
+
```bash
|
| 68 |
+
repositories.txt # the original repositories file
|
| 69 |
+
invalid_repositories.txt # the invalid repositories file, including invalid repositories
|
| 70 |
+
filtered_repositories.txt # the final repositories file, removing duplicated and invalid repositories
|
| 71 |
+
index{i}_{i * target_sub_length}.bin # the sub-index files, where i means number of sub-repositories and target_sub_length means sub-repositories length
|
| 72 |
+
index.bin # the index file merged by sub-index files and removed numpy zero arrays
|
| 73 |
+
```
|
| 74 |
+
2. Generated by [generate_cluster.py](data/generate_cluster.py):
|
| 75 |
+
```
|
| 76 |
+
repo_clusters.json # a json file representing repo-cluster dictionary
|
| 77 |
+
kmeans_model_scibert.pkl # a pickle file for storing kmeans model based on topic embeddings generated by scibert model
|
| 78 |
+
```
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
## Evaluation
|
| 82 |
+
**TODO ---- update!!!**
|
| 83 |
+
|
| 84 |
+
The [evaluation script](evaluate.py) finds all combinations of repository pairs in the dataset and calculates the cosine similarity between their embeddings. It also checks if they share at least one topic (except for `python` and `python3`). Then we compare them and use ROC AUC score to evaluate the embeddings performance. The resultant dataframe containing all pairs of cosine similarity and topics similarity can be downloaded from [here](https://huggingface.co/datasets/Lazyhope/RepoSnipy_eval/tree/main), including both code embeddings and docstring embeddings evaluations. The resultant ROC AUC score of code embeddings is around 0.84, and the docstring embeddings is around 0.81.
|
| 85 |
+
|
| 86 |
+
## License
|
| 87 |
+
|
| 88 |
+
Distributed under the MIT License. See [LICENSE](LICENSE) for more information.
|
| 89 |
+
|
| 90 |
+
## Acknowledgments
|
| 91 |
+
|
| 92 |
+
The model and the fine-tuning dataset used:
|
| 93 |
+
|
| 94 |
+
* [UniXCoder](https://arxiv.org/abs/2203.03850)
|
| 95 |
+
* [AdvTest](https://arxiv.org/abs/1909.09436)
|
| 96 |
+
* [SciBERT](https://arxiv.org/abs/1903.10676)
|
app.py
ADDED
|
@@ -0,0 +1,442 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import re
|
| 2 |
+
import json
|
| 3 |
+
import nltk
|
| 4 |
+
import joblib
|
| 5 |
+
import torch
|
| 6 |
+
import pandas as pd
|
| 7 |
+
import numpy as np
|
| 8 |
+
import streamlit as st
|
| 9 |
+
from pathlib import Path
|
| 10 |
+
from torch import nn
|
| 11 |
+
from docarray import DocList
|
| 12 |
+
from docarray.index import InMemoryExactNNIndex
|
| 13 |
+
from transformers import pipeline
|
| 14 |
+
from transformers import AutoTokenizer, AutoModel
|
| 15 |
+
from data.repo_doc import RepoDoc
|
| 16 |
+
from data.pair_classifier import PairClassifier
|
| 17 |
+
from nltk.stem import WordNetLemmatizer
|
| 18 |
+
|
| 19 |
+
nltk.download("wordnet")
|
| 20 |
+
KMEANS_MODEL_PATH = Path(__file__).parent.joinpath("data/kmeans_model_scibert.pkl")
|
| 21 |
+
SIMILARITY_CAL_MODEL_PATH = Path(__file__).parent.joinpath("data/SimilarityCal_model_NO1.pt")
|
| 22 |
+
device = (
|
| 23 |
+
"cuda"
|
| 24 |
+
if torch.cuda.is_available()
|
| 25 |
+
else "mps"
|
| 26 |
+
if torch.backends.mps.is_available()
|
| 27 |
+
else "cpu"
|
| 28 |
+
)
|
| 29 |
+
|
| 30 |
+
# 1. Product environment
|
| 31 |
+
# INDEX_PATH = Path(__file__).parent.joinpath("data/index.bin")
|
| 32 |
+
# CLUSTER_PATH = Path(__file__).parent.joinpath("data/repo_clusters.json")
|
| 33 |
+
SCIBERT_MODEL_PATH = "allenai/scibert_scivocab_uncased"
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
# 2. Developing environment
|
| 37 |
+
INDEX_PATH = Path(__file__).parent.joinpath("data/index_test.bin")
|
| 38 |
+
CLUSTER_PATH = Path(__file__).parent.joinpath("data/repo_clusters_test.json")
|
| 39 |
+
# SCIBERT_MODEL_PATH = Path(__file__).parent.joinpath("data/scibert_scivocab_uncased") # Download locally
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
@st.cache_resource(show_spinner="Loading repositories basic information...")
|
| 43 |
+
def load_index():
|
| 44 |
+
"""
|
| 45 |
+
The function to load the index file and return a RepoDoc object with default value
|
| 46 |
+
:return: index and a RepoDoc object with default value
|
| 47 |
+
"""
|
| 48 |
+
default_doc = RepoDoc(
|
| 49 |
+
name="",
|
| 50 |
+
topics=[],
|
| 51 |
+
stars=0,
|
| 52 |
+
license="",
|
| 53 |
+
code_embedding=None,
|
| 54 |
+
doc_embedding=None,
|
| 55 |
+
readme_embedding=None,
|
| 56 |
+
requirement_embedding=None,
|
| 57 |
+
repository_embedding=None
|
| 58 |
+
)
|
| 59 |
+
|
| 60 |
+
return InMemoryExactNNIndex[RepoDoc](index_file_path=INDEX_PATH), default_doc
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
@st.cache_resource(show_spinner="Loading repositories clusters...")
|
| 64 |
+
def load_repo_clusters():
|
| 65 |
+
"""
|
| 66 |
+
The function to load the repo-clusters file
|
| 67 |
+
:return: a dictionary with the repo-clusters
|
| 68 |
+
"""
|
| 69 |
+
with open(CLUSTER_PATH, "r") as file:
|
| 70 |
+
repo_clusters = json.load(file)
|
| 71 |
+
|
| 72 |
+
return repo_clusters
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
@st.cache_resource(show_spinner="Loading RepoSim4Py pipeline model...")
|
| 76 |
+
def load_pipeline_model():
|
| 77 |
+
"""
|
| 78 |
+
The function to load RepoSim4Py pipeline model
|
| 79 |
+
:return: a HuggingFace pipeline
|
| 80 |
+
"""
|
| 81 |
+
# Option 1 --- Download model by HuggingFace username/model_name
|
| 82 |
+
model_path = "Henry65/RepoSim4Py"
|
| 83 |
+
|
| 84 |
+
# Option 2 --- Download model locally
|
| 85 |
+
# model_path = Path(__file__).parent.joinpath("data/RepoSim4Py")
|
| 86 |
+
|
| 87 |
+
return pipeline(
|
| 88 |
+
model=model_path,
|
| 89 |
+
trust_remote_code=True,
|
| 90 |
+
device_map="auto"
|
| 91 |
+
)
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
@st.cache_resource(show_spinner="Loading SciBERT model...")
|
| 95 |
+
def load_scibert_model():
|
| 96 |
+
"""
|
| 97 |
+
The function to load SciBERT model
|
| 98 |
+
:return: tokenizer and model
|
| 99 |
+
"""
|
| 100 |
+
tokenizer = AutoTokenizer.from_pretrained(SCIBERT_MODEL_PATH)
|
| 101 |
+
scibert_model = AutoModel.from_pretrained(SCIBERT_MODEL_PATH).to(device)
|
| 102 |
+
return tokenizer, scibert_model
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
@st.cache_resource(show_spinner="Loading KMeans model...")
|
| 106 |
+
def load_kmeans_model():
|
| 107 |
+
"""
|
| 108 |
+
The function to load KMeans model
|
| 109 |
+
:return: a KMeans model
|
| 110 |
+
"""
|
| 111 |
+
return joblib.load(KMEANS_MODEL_PATH)
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
@st.cache_resource(show_spinner="Loading SimilarityCal model...")
|
| 115 |
+
def load_similaritycal_model():
|
| 116 |
+
sim_cal_model = PairClassifier()
|
| 117 |
+
sim_cal_model.load_state_dict(torch.load(SIMILARITY_CAL_MODEL_PATH))
|
| 118 |
+
sim_cal_model = sim_cal_model.to(device)
|
| 119 |
+
sim_cal_model = sim_cal_model.eval()
|
| 120 |
+
return sim_cal_model
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
def generate_scibert_embedding(tokenizer, scibert_model, text):
|
| 124 |
+
"""
|
| 125 |
+
The function for generating SciBERT embeddings based on topic text
|
| 126 |
+
:param text: the topic text
|
| 127 |
+
:return: topic embeddings
|
| 128 |
+
"""
|
| 129 |
+
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512).to(device)
|
| 130 |
+
outputs = scibert_model(**inputs)
|
| 131 |
+
# Use mean pooling for sentence representation
|
| 132 |
+
embeddings = outputs.last_hidden_state.mean(dim=1).cpu().detach().numpy()
|
| 133 |
+
return embeddings
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
@st.cache_data(show_spinner=False)
|
| 137 |
+
def run_pipeline_model(_model, repo_name, github_token):
|
| 138 |
+
"""
|
| 139 |
+
The function to generate repo_info by using pipeline model
|
| 140 |
+
:param _model: pipeline
|
| 141 |
+
:param repo_name: the name of repository
|
| 142 |
+
:param github_token: GitHub token
|
| 143 |
+
:return: the information generated by the pipeline
|
| 144 |
+
"""
|
| 145 |
+
with st.spinner(
|
| 146 |
+
f"Downloading and extracting the {repo_name}, this may take a while..."
|
| 147 |
+
):
|
| 148 |
+
extracted_infos = _model.preprocess(repo_name, github_token=github_token)
|
| 149 |
+
|
| 150 |
+
if not extracted_infos:
|
| 151 |
+
return None
|
| 152 |
+
|
| 153 |
+
with st.spinner(f"Generating embeddings for {repo_name}..."):
|
| 154 |
+
repo_info = _model.forward(extracted_infos)[0]
|
| 155 |
+
|
| 156 |
+
return repo_info
|
| 157 |
+
|
| 158 |
+
|
| 159 |
+
def run_index_search(index, query, search_field, limit):
|
| 160 |
+
"""
|
| 161 |
+
The function to search at index file based on query and limit
|
| 162 |
+
:param index: the index
|
| 163 |
+
:param query: query
|
| 164 |
+
:param search_field: which field to search for
|
| 165 |
+
:param limit: page limit
|
| 166 |
+
:return: a dataframe with search results
|
| 167 |
+
"""
|
| 168 |
+
top_matches, scores = index.find(
|
| 169 |
+
query=query, search_field=search_field, limit=limit
|
| 170 |
+
)
|
| 171 |
+
|
| 172 |
+
search_results = top_matches.to_dataframe()
|
| 173 |
+
search_results["scores"] = scores
|
| 174 |
+
|
| 175 |
+
return search_results
|
| 176 |
+
|
| 177 |
+
|
| 178 |
+
def run_cluster_search(repo_clusters, repo_name_list):
|
| 179 |
+
"""
|
| 180 |
+
The function to search cluster number for such repositories.
|
| 181 |
+
:param repo_clusters: dictionary with repo-clusters
|
| 182 |
+
:param repo_name_list: list or array represent repository names
|
| 183 |
+
:return: cluster number list
|
| 184 |
+
"""
|
| 185 |
+
clusters = []
|
| 186 |
+
for repo_name in repo_name_list:
|
| 187 |
+
clusters.append(repo_clusters[repo_name])
|
| 188 |
+
return clusters
|
| 189 |
+
|
| 190 |
+
|
| 191 |
+
def run_similaritycal_search(index, repo_clusters, model, query_doc, query_cluster_number, limit, same_cluster=True):
|
| 192 |
+
"""
|
| 193 |
+
The function to run SimilarityCal model.
|
| 194 |
+
:param index: index file
|
| 195 |
+
:param repo_clusters: repo-clusters json file
|
| 196 |
+
:param model: SimilarityCal model
|
| 197 |
+
:param query_doc: query repo doc
|
| 198 |
+
:param query_cluster_number: query repo cluster number
|
| 199 |
+
:param limit: limit
|
| 200 |
+
:param same_cluster: whether searching for same cluster
|
| 201 |
+
:return: result dataframe
|
| 202 |
+
"""
|
| 203 |
+
docs = index._docs
|
| 204 |
+
input_embeddings_list = []
|
| 205 |
+
result_dl = DocList[RepoDoc]()
|
| 206 |
+
for doc in docs:
|
| 207 |
+
if same_cluster and query_cluster_number != repo_clusters[doc.name]:
|
| 208 |
+
continue
|
| 209 |
+
if doc.name != query_doc.name:
|
| 210 |
+
e1, e2 = (torch.Tensor(query_doc.repository_embedding),
|
| 211 |
+
torch.Tensor(doc.repository_embedding))
|
| 212 |
+
input_embeddings = torch.cat([e1, e2])
|
| 213 |
+
input_embeddings_list.append(input_embeddings)
|
| 214 |
+
result_dl.append(doc)
|
| 215 |
+
|
| 216 |
+
input_embeddings_list = torch.stack(input_embeddings_list).to(device)
|
| 217 |
+
softmax = nn.Softmax(dim=1).to(device)
|
| 218 |
+
model_output = model(input_embeddings_list)
|
| 219 |
+
similarity_scores = softmax(model_output)[:, 1].cpu().detach().numpy()
|
| 220 |
+
df = result_dl.to_dataframe()
|
| 221 |
+
df["scores"] = similarity_scores
|
| 222 |
+
return df.sort_values(by='scores', ascending=False).reset_index(drop=True).head(limit)
|
| 223 |
+
|
| 224 |
+
|
| 225 |
+
if __name__ == "__main__":
|
| 226 |
+
# Loading dataset and models
|
| 227 |
+
index, default_doc = load_index()
|
| 228 |
+
repo_clusters = load_repo_clusters()
|
| 229 |
+
pipeline_model = load_pipeline_model()
|
| 230 |
+
lemmatizer = WordNetLemmatizer()
|
| 231 |
+
tokenizer, scibert_model = load_scibert_model()
|
| 232 |
+
kmeans = load_kmeans_model()
|
| 233 |
+
sim_cal_model = load_similaritycal_model()
|
| 234 |
+
|
| 235 |
+
# Setting the sidebar
|
| 236 |
+
with st.sidebar:
|
| 237 |
+
st.text_input(
|
| 238 |
+
label="GitHub Token",
|
| 239 |
+
key="github_token",
|
| 240 |
+
type="password",
|
| 241 |
+
placeholder="Paste your GitHub token here",
|
| 242 |
+
help="Consider setting GitHub token to avoid hitting rate limits: https://docs.github.com/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token",
|
| 243 |
+
)
|
| 244 |
+
|
| 245 |
+
st.slider(
|
| 246 |
+
label="Search results limit",
|
| 247 |
+
min_value=1,
|
| 248 |
+
max_value=100,
|
| 249 |
+
value=10,
|
| 250 |
+
step=1,
|
| 251 |
+
key="search_results_limit",
|
| 252 |
+
help="Limit the number of search results",
|
| 253 |
+
)
|
| 254 |
+
|
| 255 |
+
st.multiselect(
|
| 256 |
+
label="Display columns",
|
| 257 |
+
options=["scores", "name", "topics", "cluster number", "stars", "license"],
|
| 258 |
+
default=["scores", "name", "topics", "cluster number", "stars", "license"],
|
| 259 |
+
help="Select columns to display in the search results",
|
| 260 |
+
key="display_columns",
|
| 261 |
+
)
|
| 262 |
+
|
| 263 |
+
# Setting the main content
|
| 264 |
+
st.title("RepoSnipy")
|
| 265 |
+
|
| 266 |
+
st.text_input(
|
| 267 |
+
"Enter a GitHub repository URL or owner/repository (case-sensitive):",
|
| 268 |
+
value="",
|
| 269 |
+
max_chars=200,
|
| 270 |
+
placeholder="numpy/numpy",
|
| 271 |
+
key="repo_input",
|
| 272 |
+
)
|
| 273 |
+
|
| 274 |
+
st.checkbox(
|
| 275 |
+
label="Add/Update this repository to the index",
|
| 276 |
+
value=False,
|
| 277 |
+
key="update_index",
|
| 278 |
+
help="Encode the latest version of this repository and add/update it to the index",
|
| 279 |
+
)
|
| 280 |
+
|
| 281 |
+
# Setting the search button
|
| 282 |
+
search = st.button("Search")
|
| 283 |
+
# The regular expression for repository
|
| 284 |
+
repo_regex = r"^((git@|http(s)?://)?(github\.com)(/|:))?(?P<owner>[\w.-]+)(/)(?P<repo>[\w.-]+?)(\.git)?(/)?$"
|
| 285 |
+
|
| 286 |
+
if search:
|
| 287 |
+
match_res = re.match(repo_regex, st.session_state.repo_input)
|
| 288 |
+
# 1. Repository can be matched
|
| 289 |
+
if match_res is not None:
|
| 290 |
+
repo_name = f"{match_res.group('owner')}/{match_res.group('repo')}"
|
| 291 |
+
records = index.filter({"name": {"$eq": repo_name}})
|
| 292 |
+
# 1) Building the query information
|
| 293 |
+
query_doc = default_doc.copy() if not records else records[0]
|
| 294 |
+
# 2) Recording the cluster number
|
| 295 |
+
cluster_number = -1 if not records else repo_clusters[repo_name]
|
| 296 |
+
|
| 297 |
+
# Importance 1 ---- situation need to update repository information and cluster number
|
| 298 |
+
if st.session_state.update_index or not records:
|
| 299 |
+
# 1) Updating repository information by using RepoSim4Py pipeline
|
| 300 |
+
repo_info = run_pipeline_model(pipeline_model, repo_name, st.session_state.github_token)
|
| 301 |
+
if repo_info is None:
|
| 302 |
+
st.error("Repository not found or invalid GitHub token!")
|
| 303 |
+
st.stop()
|
| 304 |
+
|
| 305 |
+
query_doc.name = repo_info["name"]
|
| 306 |
+
query_doc.topics = repo_info["topics"]
|
| 307 |
+
query_doc.stars = repo_info["stars"]
|
| 308 |
+
query_doc.license = repo_info["license"]
|
| 309 |
+
query_doc.code_embedding = None if np.all(repo_info["mean_code_embedding"] == 0) else repo_info[
|
| 310 |
+
"mean_code_embedding"].reshape(-1)
|
| 311 |
+
query_doc.doc_embedding = None if np.all(repo_info["mean_doc_embedding"] == 0) else repo_info[
|
| 312 |
+
"mean_doc_embedding"].reshape(-1)
|
| 313 |
+
query_doc.readme_embedding = None if np.all(repo_info["mean_readme_embedding"] == 0) else repo_info[
|
| 314 |
+
"mean_readme_embedding"].reshape(-1)
|
| 315 |
+
query_doc.requirement_embedding = None if np.all(repo_info["mean_requirement_embedding"] == 0) else \
|
| 316 |
+
repo_info["mean_requirement_embedding"].reshape(-1)
|
| 317 |
+
query_doc.repository_embedding = None if np.all(repo_info["mean_repo_embedding"] == 0) else repo_info[
|
| 318 |
+
"mean_repo_embedding"].reshape(-1)
|
| 319 |
+
|
| 320 |
+
# 2) Updating cluster number
|
| 321 |
+
topics_text = ' '.join(
|
| 322 |
+
[lemmatizer.lemmatize(topic.lower().replace('-', ' ')) for topic in query_doc.topics])
|
| 323 |
+
topic_embeddings = generate_scibert_embedding(tokenizer, scibert_model, topics_text)
|
| 324 |
+
cluster_number = int(kmeans.predict(topic_embeddings)[0])
|
| 325 |
+
|
| 326 |
+
# Importance 2 ---- update index file and repository clusters file
|
| 327 |
+
if st.session_state.update_index:
|
| 328 |
+
if not query_doc.license:
|
| 329 |
+
st.warning(
|
| 330 |
+
"License is missing in this repository and will not be persisted!"
|
| 331 |
+
)
|
| 332 |
+
elif (query_doc.code_embedding is None) and (query_doc.doc_embedding is None) and (
|
| 333 |
+
query_doc.requirement_embedding is None) and (query_doc.readme_embedding is None) and (
|
| 334 |
+
query_doc.repository_embedding is None):
|
| 335 |
+
st.warning(
|
| 336 |
+
"This repository has no such useful information (code, docstring, readme and requirement) extracted and will not be persisted!"
|
| 337 |
+
)
|
| 338 |
+
else:
|
| 339 |
+
index.index(query_doc)
|
| 340 |
+
repo_clusters[query_doc.name] = cluster_number
|
| 341 |
+
|
| 342 |
+
with st.spinner("Persisting the index and repository clusters..."):
|
| 343 |
+
index.persist(str(INDEX_PATH))
|
| 344 |
+
with open(CLUSTER_PATH, "w") as file:
|
| 345 |
+
json.dump(repo_clusters, file, indent=4)
|
| 346 |
+
st.success("Repository updated to the index!")
|
| 347 |
+
|
| 348 |
+
load_index.clear()
|
| 349 |
+
load_repo_clusters.clear()
|
| 350 |
+
|
| 351 |
+
st.session_state["query_doc"] = query_doc
|
| 352 |
+
st.session_state["cluster_number"] = cluster_number
|
| 353 |
+
|
| 354 |
+
# 2. Repository cannot be matched
|
| 355 |
+
else:
|
| 356 |
+
st.error("Invalid input!")
|
| 357 |
+
|
| 358 |
+
# Starting to query
|
| 359 |
+
if "query_doc" in st.session_state:
|
| 360 |
+
query_doc = st.session_state.query_doc
|
| 361 |
+
cluster_number = st.session_state.cluster_number
|
| 362 |
+
limit = st.session_state.search_results_limit
|
| 363 |
+
|
| 364 |
+
# Showing the query repository information
|
| 365 |
+
st.dataframe(
|
| 366 |
+
pd.DataFrame(
|
| 367 |
+
[
|
| 368 |
+
{
|
| 369 |
+
"name": query_doc.name,
|
| 370 |
+
"topics": query_doc.topics,
|
| 371 |
+
"cluster number": cluster_number,
|
| 372 |
+
"stars": query_doc.stars,
|
| 373 |
+
"license": query_doc.license,
|
| 374 |
+
}
|
| 375 |
+
],
|
| 376 |
+
)
|
| 377 |
+
)
|
| 378 |
+
|
| 379 |
+
display_columns = st.session_state.display_columns
|
| 380 |
+
code_sim_tab, doc_sim_tab, readme_sim_tab, requirement_sim_tab, repo_sim_tab, same_cluster_tab, diff_cluster_tab = st.tabs(
|
| 381 |
+
["Code_sim", "Docstring_sim", "Readme_sim", "Requirement_sim",
|
| 382 |
+
"Repository_sim", "Same_cluster", "Different_cluster"])
|
| 383 |
+
|
| 384 |
+
if query_doc.code_embedding is not None:
|
| 385 |
+
code_sim_res = run_index_search(index, query_doc, "code_embedding", limit)
|
| 386 |
+
cluster_numbers = run_cluster_search(repo_clusters, code_sim_res["name"])
|
| 387 |
+
code_sim_res["cluster number"] = cluster_numbers
|
| 388 |
+
code_sim_tab.dataframe(code_sim_res[display_columns])
|
| 389 |
+
else:
|
| 390 |
+
code_sim_tab.error("No function code was extracted for this repository!")
|
| 391 |
+
|
| 392 |
+
if query_doc.doc_embedding is not None:
|
| 393 |
+
doc_sim_res = run_index_search(index, query_doc, "doc_embedding", limit)
|
| 394 |
+
cluster_numbers = run_cluster_search(repo_clusters, doc_sim_res["name"])
|
| 395 |
+
doc_sim_res["cluster number"] = cluster_numbers
|
| 396 |
+
doc_sim_tab.dataframe(doc_sim_res[display_columns])
|
| 397 |
+
else:
|
| 398 |
+
doc_sim_tab.error("No function docstring was extracted for this repository!")
|
| 399 |
+
|
| 400 |
+
if query_doc.readme_embedding is not None:
|
| 401 |
+
readme_sim_res = run_index_search(index, query_doc, "readme_embedding", limit)
|
| 402 |
+
cluster_numbers = run_cluster_search(repo_clusters, readme_sim_res["name"])
|
| 403 |
+
readme_sim_res["cluster number"] = cluster_numbers
|
| 404 |
+
readme_sim_tab.dataframe(readme_sim_res[display_columns])
|
| 405 |
+
else:
|
| 406 |
+
readme_sim_tab.error("No readme file was extracted for this repository!")
|
| 407 |
+
|
| 408 |
+
if query_doc.requirement_embedding is not None:
|
| 409 |
+
requirement_sim_res = run_index_search(index, query_doc, "requirement_embedding", limit)
|
| 410 |
+
cluster_numbers = run_cluster_search(repo_clusters, requirement_sim_res["name"])
|
| 411 |
+
requirement_sim_res["cluster number"] = cluster_numbers
|
| 412 |
+
requirement_sim_tab.dataframe(requirement_sim_res[display_columns])
|
| 413 |
+
else:
|
| 414 |
+
requirement_sim_tab.error("No requirement file was extracted for this repository!")
|
| 415 |
+
|
| 416 |
+
if query_doc.repository_embedding is not None:
|
| 417 |
+
repo_sim_res = run_index_search(index, query_doc, "repository_embedding", limit)
|
| 418 |
+
cluster_numbers = run_cluster_search(repo_clusters, repo_sim_res["name"])
|
| 419 |
+
repo_sim_res["cluster number"] = cluster_numbers
|
| 420 |
+
repo_sim_tab.dataframe(repo_sim_res[display_columns])
|
| 421 |
+
else:
|
| 422 |
+
repo_sim_tab.error("No such useful information was extracted for this repository!")
|
| 423 |
+
|
| 424 |
+
if cluster_number is not None and query_doc.repository_embedding is not None:
|
| 425 |
+
same_cluster_df = run_similaritycal_search(index, repo_clusters, sim_cal_model,
|
| 426 |
+
query_doc, cluster_number, limit,
|
| 427 |
+
same_cluster=True)
|
| 428 |
+
diff_cluster_df = run_similaritycal_search(index, repo_clusters, sim_cal_model,
|
| 429 |
+
query_doc, cluster_number, limit,
|
| 430 |
+
same_cluster=False)
|
| 431 |
+
same_cluster_numbers = run_cluster_search(repo_clusters, same_cluster_df["name"])
|
| 432 |
+
same_cluster_df["cluster number"] = same_cluster_numbers
|
| 433 |
+
|
| 434 |
+
diff_cluster_numbers = run_cluster_search(repo_clusters, diff_cluster_df["name"])
|
| 435 |
+
diff_cluster_df["cluster number"] = diff_cluster_numbers
|
| 436 |
+
|
| 437 |
+
same_cluster_tab.dataframe(same_cluster_df[display_columns])
|
| 438 |
+
diff_cluster_tab.dataframe(diff_cluster_df[display_columns])
|
| 439 |
+
|
| 440 |
+
else:
|
| 441 |
+
same_cluster_tab.error("No such useful information was extracted for this repository!")
|
| 442 |
+
diff_cluster_tab.error("No such useful information was extracted for this repository!")
|
assets/search.gif
ADDED
|
Git LFS Details
|
data/SimilarityCal_model_NO1.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9146d0736261db38bb6fe6d4d6dd17797c01980be23b114af4b86a18589af632
|
| 3 |
+
size 102423158
|
data/index.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3837b4cb3f10cd0ff035201ef44ab655608b2877e5c89efc5cc63a69b666c415
|
| 3 |
+
size 226172318
|
data/index_test.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3837b4cb3f10cd0ff035201ef44ab655608b2877e5c89efc5cc63a69b666c415
|
| 3 |
+
size 226172318
|
data/kmeans_model_scibert.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7b561ee3342b0b8646533e6b7ffd451234d76ce3695862fd17fad18787a3b47c
|
| 3 |
+
size 967215
|
data/pair_classifier.py
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torch import nn
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
class EmbeddingMLP(nn.Module):
|
| 6 |
+
def __init__(self, size=4):
|
| 7 |
+
super().__init__()
|
| 8 |
+
self.net = nn.Sequential(
|
| 9 |
+
nn.Linear(768 * size, 900 * size),
|
| 10 |
+
nn.BatchNorm1d(900 * size),
|
| 11 |
+
nn.ReLU(),
|
| 12 |
+
nn.Linear(900 * size, 300 * size)
|
| 13 |
+
)
|
| 14 |
+
|
| 15 |
+
def forward(self, data):
|
| 16 |
+
res = self.net(data)
|
| 17 |
+
return res
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
class PairClassifier(nn.Module):
|
| 21 |
+
def __init__(self, size=4):
|
| 22 |
+
super().__init__()
|
| 23 |
+
self.encoder = EmbeddingMLP(size)
|
| 24 |
+
self.net = nn.Sequential(
|
| 25 |
+
nn.Linear(300 * size * 2, 3000),
|
| 26 |
+
nn.ReLU(),
|
| 27 |
+
nn.Linear(3000, 1000),
|
| 28 |
+
nn.ReLU(),
|
| 29 |
+
nn.Linear(1000, 2),
|
| 30 |
+
)
|
| 31 |
+
|
| 32 |
+
def forward(self, data):
|
| 33 |
+
e1 = self.encoder(data[:, :768 * 4])
|
| 34 |
+
e2 = self.encoder(data[:, 768 * 4:])
|
| 35 |
+
twins = torch.cat([e1, e2], dim=1)
|
| 36 |
+
res = self.net(twins)
|
| 37 |
+
return res
|
data/repo_clusters.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
data/repo_clusters_test.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
data/repo_doc.py
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import List, Optional
|
| 2 |
+
from docarray import BaseDoc
|
| 3 |
+
from docarray.typing import NdArray
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
class RepoDoc(BaseDoc):
|
| 7 |
+
"""
|
| 8 |
+
The class for representing basic data structures.
|
| 9 |
+
"""
|
| 10 |
+
name: str
|
| 11 |
+
topics: List[str]
|
| 12 |
+
stars: int
|
| 13 |
+
license: str
|
| 14 |
+
code_embedding: Optional[NdArray[768]]
|
| 15 |
+
doc_embedding: Optional[NdArray[768]]
|
| 16 |
+
readme_embedding: Optional[NdArray[768]]
|
| 17 |
+
requirement_embedding: Optional[NdArray[768]]
|
| 18 |
+
repository_embedding: Optional[NdArray[3072]]
|
requirements.txt
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
accelerate
|
| 2 |
+
docarray
|
| 3 |
+
pandas
|
| 4 |
+
numpy
|
| 5 |
+
streamlit
|
| 6 |
+
torch
|
| 7 |
+
transformers
|
| 8 |
+
tqdm
|
| 9 |
+
scikit-learn
|
| 10 |
+
nltk
|
| 11 |
+
plotly
|
| 12 |
+
joblib
|