Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import argparse, torch, os | |
| from PIL import Image | |
| from src.tryon_pipeline import StableDiffusionXLInpaintPipeline as TryonPipeline | |
| from src.unet_hacked_garmnet import UNet2DConditionModel as UNet2DConditionModel_ref | |
| from src.unet_hacked_tryon import UNet2DConditionModel | |
| from transformers import ( | |
| CLIPImageProcessor, | |
| CLIPVisionModelWithProjection, | |
| ) | |
| from diffusers import AutoencoderKL | |
| from typing import List | |
| from util.common import open_folder | |
| from util.image import pil_to_binary_mask, save_output_image | |
| from utils_mask import get_mask_location | |
| from torchvision import transforms | |
| import apply_net | |
| from preprocess.humanparsing.run_parsing import Parsing | |
| from preprocess.openpose.run_openpose import OpenPose | |
| from detectron2.data.detection_utils import convert_PIL_to_numpy,_apply_exif_orientation | |
| from torchvision.transforms.functional import to_pil_image | |
| from util.pipeline import quantize_4bit, restart_cpu_offload, torch_gc | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument("--share", type=str, default=False, help="Set to True to share the app publicly.") | |
| parser.add_argument("--lowvram", action="store_true", help="Enable CPU offload for model operations.") | |
| parser.add_argument("--load_mode", default=None, type=str, choices=["4bit", "8bit"], help="Quantization mode for optimization memory consumption") | |
| parser.add_argument("--fixed_vae", action="store_true", default=True, help="Use fixed vae for FP16.") | |
| args = parser.parse_args() | |
| load_mode = args.load_mode | |
| fixed_vae = args.fixed_vae | |
| dtype = torch.float16 | |
| device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
| model_id = 'yisol/IDM-VTON' | |
| vae_model_id = 'madebyollin/sdxl-vae-fp16-fix' | |
| dtypeQuantize = dtype | |
| if(load_mode in ('4bit','8bit')): | |
| dtypeQuantize = torch.float8_e4m3fn | |
| ENABLE_CPU_OFFLOAD = args.lowvram | |
| torch.backends.cudnn.allow_tf32 = False | |
| torch.backends.cuda.allow_tf32 = False | |
| need_restart_cpu_offloading = False | |
| unet = None | |
| pipe = None | |
| UNet_Encoder = None | |
| example_path = os.path.join(os.path.dirname(__file__), 'example') | |
| def start_tryon(dict, garm_img, garment_des, category, is_checked, is_checked_crop, denoise_steps, is_randomize_seed, seed, number_of_images): | |
| global pipe, unet, UNet_Encoder, need_restart_cpu_offloading | |
| if pipe == None: | |
| unet = UNet2DConditionModel.from_pretrained( | |
| model_id, | |
| subfolder="unet", | |
| torch_dtype=dtypeQuantize, | |
| ) | |
| if load_mode == '4bit': | |
| quantize_4bit(unet) | |
| unet.requires_grad_(False) | |
| image_encoder = CLIPVisionModelWithProjection.from_pretrained( | |
| model_id, | |
| subfolder="image_encoder", | |
| torch_dtype=torch.float16, | |
| ) | |
| if load_mode == '4bit': | |
| quantize_4bit(image_encoder) | |
| if fixed_vae: | |
| vae = AutoencoderKL.from_pretrained(vae_model_id, torch_dtype=dtype) | |
| else: | |
| vae = AutoencoderKL.from_pretrained(model_id, | |
| subfolder="vae", | |
| torch_dtype=dtype, | |
| ) | |
| # "stabilityai/stable-diffusion-xl-base-1.0", | |
| UNet_Encoder = UNet2DConditionModel_ref.from_pretrained( | |
| model_id, | |
| subfolder="unet_encoder", | |
| torch_dtype=dtypeQuantize, | |
| ) | |
| if load_mode == '4bit': | |
| quantize_4bit(UNet_Encoder) | |
| UNet_Encoder.requires_grad_(False) | |
| image_encoder.requires_grad_(False) | |
| vae.requires_grad_(False) | |
| unet.requires_grad_(False) | |
| pipe_param = { | |
| 'pretrained_model_name_or_path': model_id, | |
| 'unet': unet, | |
| 'torch_dtype': dtype, | |
| 'vae': vae, | |
| 'image_encoder': image_encoder, | |
| 'feature_extractor': CLIPImageProcessor(), | |
| } | |
| pipe = TryonPipeline.from_pretrained(**pipe_param).to(device) | |
| pipe.unet_encoder = UNet_Encoder | |
| pipe.unet_encoder.to(pipe.unet.device) | |
| if load_mode == '4bit': | |
| if pipe.text_encoder is not None: | |
| quantize_4bit(pipe.text_encoder) | |
| if pipe.text_encoder_2 is not None: | |
| quantize_4bit(pipe.text_encoder_2) | |
| else: | |
| if ENABLE_CPU_OFFLOAD: | |
| need_restart_cpu_offloading =True | |
| torch_gc() | |
| parsing_model = Parsing(0) | |
| openpose_model = OpenPose(0) | |
| openpose_model.preprocessor.body_estimation.model.to(device) | |
| tensor_transfrom = transforms.Compose( | |
| [ | |
| transforms.ToTensor(), | |
| transforms.Normalize([0.5], [0.5]), | |
| ] | |
| ) | |
| if need_restart_cpu_offloading: | |
| restart_cpu_offload(pipe, load_mode) | |
| elif ENABLE_CPU_OFFLOAD: | |
| pipe.enable_model_cpu_offload() | |
| #if load_mode != '4bit' : | |
| # pipe.enable_xformers_memory_efficient_attention() | |
| garm_img= garm_img.convert("RGB").resize((768,1024)) | |
| human_img_orig = dict["background"].convert("RGB") | |
| if is_checked_crop: | |
| width, height = human_img_orig.size | |
| target_width = int(min(width, height * (3 / 4))) | |
| target_height = int(min(height, width * (4 / 3))) | |
| left = (width - target_width) / 2 | |
| top = (height - target_height) / 2 | |
| right = (width + target_width) / 2 | |
| bottom = (height + target_height) / 2 | |
| cropped_img = human_img_orig.crop((left, top, right, bottom)) | |
| crop_size = cropped_img.size | |
| human_img = cropped_img.resize((768,1024)) | |
| else: | |
| human_img = human_img_orig.resize((768,1024)) | |
| if is_checked: | |
| keypoints = openpose_model(human_img.resize((384,512))) | |
| model_parse, _ = parsing_model(human_img.resize((384,512))) | |
| mask, mask_gray = get_mask_location('hd', category, model_parse, keypoints) | |
| mask = mask.resize((768,1024)) | |
| else: | |
| mask = pil_to_binary_mask(dict['layers'][0].convert("RGB").resize((768, 1024))) | |
| # mask = transforms.ToTensor()(mask) | |
| # mask = mask.unsqueeze(0) | |
| mask_gray = (1-transforms.ToTensor()(mask)) * tensor_transfrom(human_img) | |
| mask_gray = to_pil_image((mask_gray+1.0)/2.0) | |
| human_img_arg = _apply_exif_orientation(human_img.resize((384,512))) | |
| human_img_arg = convert_PIL_to_numpy(human_img_arg, format="BGR") | |
| args = apply_net.create_argument_parser().parse_args(('show', './configs/densepose_rcnn_R_50_FPN_s1x.yaml', './ckpt/densepose/model_final_162be9.pkl', 'dp_segm', '-v', '--opts', 'MODEL.DEVICE', 'cuda')) | |
| # verbosity = getattr(args, "verbosity", None) | |
| pose_img = args.func(args,human_img_arg) | |
| pose_img = pose_img[:,:,::-1] | |
| pose_img = Image.fromarray(pose_img).resize((768,1024)) | |
| if pipe.text_encoder is not None: | |
| pipe.text_encoder.to(device) | |
| if pipe.text_encoder_2 is not None: | |
| pipe.text_encoder_2.to(device) | |
| with torch.no_grad(): | |
| # Extract the images | |
| with torch.cuda.amp.autocast(dtype=dtype): | |
| with torch.no_grad(): | |
| prompt = "model is wearing " + garment_des | |
| negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality" | |
| with torch.inference_mode(): | |
| ( | |
| prompt_embeds, | |
| negative_prompt_embeds, | |
| pooled_prompt_embeds, | |
| negative_pooled_prompt_embeds, | |
| ) = pipe.encode_prompt( | |
| prompt, | |
| num_images_per_prompt=1, | |
| do_classifier_free_guidance=True, | |
| negative_prompt=negative_prompt, | |
| ) | |
| prompt = "a photo of " + garment_des | |
| negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality" | |
| if not isinstance(prompt, List): | |
| prompt = [prompt] * 1 | |
| if not isinstance(negative_prompt, List): | |
| negative_prompt = [negative_prompt] * 1 | |
| with torch.inference_mode(): | |
| ( | |
| prompt_embeds_c, | |
| _, | |
| _, | |
| _, | |
| ) = pipe.encode_prompt( | |
| prompt, | |
| num_images_per_prompt=1, | |
| do_classifier_free_guidance=False, | |
| negative_prompt=negative_prompt, | |
| ) | |
| pose_img = tensor_transfrom(pose_img).unsqueeze(0).to(device,dtype) | |
| garm_tensor = tensor_transfrom(garm_img).unsqueeze(0).to(device,dtype) | |
| results = [] | |
| current_seed = seed | |
| for i in range(number_of_images): | |
| if is_randomize_seed: | |
| current_seed = torch.randint(0, 2**32, size=(1,)).item() | |
| generator = torch.Generator(device).manual_seed(current_seed) if seed != -1 else None | |
| current_seed = current_seed + i | |
| images = pipe( | |
| prompt_embeds=prompt_embeds.to(device,dtype), | |
| negative_prompt_embeds=negative_prompt_embeds.to(device,dtype), | |
| pooled_prompt_embeds=pooled_prompt_embeds.to(device,dtype), | |
| negative_pooled_prompt_embeds=negative_pooled_prompt_embeds.to(device,dtype), | |
| num_inference_steps=denoise_steps, | |
| generator=generator, | |
| strength = 1.0, | |
| pose_img = pose_img.to(device,dtype), | |
| text_embeds_cloth=prompt_embeds_c.to(device,dtype), | |
| cloth = garm_tensor.to(device,dtype), | |
| mask_image=mask, | |
| image=human_img, | |
| height=1024, | |
| width=768, | |
| ip_adapter_image = garm_img.resize((768,1024)), | |
| guidance_scale=2.0, | |
| dtype=dtype, | |
| device=device, | |
| )[0] | |
| if is_checked_crop: | |
| out_img = images[0].resize(crop_size) | |
| human_img_orig.paste(out_img, (int(left), int(top))) | |
| img_path = save_output_image(human_img_orig, base_path="outputs", base_filename='img', seed=current_seed) | |
| results.append(img_path) | |
| else: | |
| img_path = save_output_image(images[0], base_path="outputs", base_filename='img') | |
| results.append(img_path) | |
| return results, mask_gray | |
| garm_list = os.listdir(os.path.join(example_path,"cloth")) | |
| garm_list_path = [os.path.join(example_path,"cloth",garm) for garm in garm_list] | |
| human_list = os.listdir(os.path.join(example_path,"human")) | |
| human_list_path = [os.path.join(example_path,"human",human) for human in human_list] | |
| human_ex_list = [] | |
| for ex_human in human_list_path: | |
| if "Jensen" in ex_human or "sam1 (1)" in ex_human: | |
| ex_dict = {} | |
| ex_dict['background'] = ex_human | |
| ex_dict['layers'] = None | |
| ex_dict['composite'] = None | |
| human_ex_list.append(ex_dict) | |
| image_blocks = gr.Blocks().queue() | |
| with image_blocks as demo: | |
| gr.Markdown("## V7 - IDM-VTON πππ improved by SECourses and DEVAIEXP: 1-Click Installers Latest Version On : https://www.patreon.com/posts/103022942") | |
| gr.Markdown("Virtual Try-on with your image and garment image. Check out the [source codes](https://github.com/yisol/IDM-VTON) and the [model](https://huggingface.co/yisol/IDM-VTON)") | |
| with gr.Row(): | |
| with gr.Column(): | |
| imgs = gr.ImageEditor(sources='upload', type="pil", label='Human. Mask with pen or use auto-masking', interactive=True) | |
| with gr.Row(): | |
| category = gr.Radio(choices=["upper_body", "lower_body", "dresses"], label="Select Garment Category", value="upper_body") | |
| is_checked = gr.Checkbox(label="Yes", info="Use auto-generated mask (Takes 5 seconds)",value=True) | |
| with gr.Row(): | |
| is_checked_crop = gr.Checkbox(label="Yes", info="Use auto-crop & resizing",value=True) | |
| example = gr.Examples( | |
| inputs=imgs, | |
| examples_per_page=2, | |
| examples=human_ex_list | |
| ) | |
| with gr.Column(): | |
| garm_img = gr.Image(label="Garment", sources='upload', type="pil") | |
| with gr.Row(elem_id="prompt-container"): | |
| with gr.Row(): | |
| prompt = gr.Textbox(placeholder="Description of garment ex) Short Sleeve Round Neck T-shirts", show_label=False, elem_id="prompt") | |
| example = gr.Examples( | |
| inputs=garm_img, | |
| examples_per_page=8, | |
| examples=garm_list_path) | |
| with gr.Column(): | |
| with gr.Row(): | |
| # image_out = gr.Image(label="Output", elem_id="output-img", height=400) | |
| masked_img = gr.Image(label="Masked image output", elem_id="masked-img",show_share_button=False) | |
| with gr.Row(): | |
| btn_open_outputs = gr.Button("Open Outputs Folder") | |
| btn_open_outputs.click(fn=open_folder) | |
| with gr.Column(): | |
| with gr.Row(): | |
| # image_out = gr.Image(label="Output", elem_id="output-img", height=400) | |
| image_gallery = gr.Gallery(label="Generated Images", show_label=True) | |
| with gr.Row(): | |
| try_button = gr.Button(value="Try-on") | |
| denoise_steps = gr.Number(label="Denoising Steps", minimum=20, maximum=120, value=30, step=1) | |
| seed = gr.Number(label="Seed", minimum=-1, maximum=2147483647, step=1, value=1) | |
| is_randomize_seed = gr.Checkbox(label="Randomize seed for each generated image", value=True) | |
| number_of_images = gr.Number(label="Number Of Images To Generate (it will start from your input seed and increment by 1)", minimum=1, maximum=9999, value=1, step=1) | |
| try_button.click(fn=start_tryon, inputs=[imgs, garm_img, prompt, category, is_checked, is_checked_crop, denoise_steps, is_randomize_seed, seed, number_of_images], outputs=[image_gallery, masked_img],api_name='tryon') | |
| image_blocks.launch(inbrowser=True,share=args.share) | |