# Import necessary libraries import numpy as np import joblib # For loading the serialized model import pandas as pd # For data manipualation from flask import Flask, jsonify, request # For creating Flask API # Intialize the Flask application # Correcting the inconsistent variable name to SuperKart_predictions_api SuperKart_predictions_api = Flask("SuperKart K model") # Load the serialized model # Ensure the model file path is correct relative to where the app runs in the container try: model = joblib.load("best_superkart_sales_model.joblib") print("Model loaded successfully.") except FileNotFoundError: print("Error: Model file 'best_superkart_sales_model.joblib' not found.") model = None # Set model to None if loading fails except Exception as e: print(f"Error loading model: {e}") model = None # Define a route for home page(GET request) @SuperKart_predictions_api.route('/') # Use the correct variable name here def home(): """ This function handles GET requests to the root URL ('/') of the API. It returns a simple welcome message. """ return "Welcome to SuperKart!" # Define an endpoint @SuperKart_predictions_api.route('/v1/SuperKart', methods=['POST']) # Use the correct variable name and specify POST method def predict(): """ This function handles POST requests to the '/v1/SuperKart' endpoint. It expects a JSON payload containing the data for prediction, uses the loaded model to make predictions, and returns the predictions. """ # Check if the model was loaded successfully if model is None: return jsonify({"error": "Model is not available. Cannot make predictions."}), 500 try: # Get the JSON data from the request # The data is expected to be a list of dictionaries, where each dictionary # represents a single data point with features. data = request.get_json() # Convert the JSON data to a pandas DataFrame # Ensure the column names in the JSON match the feature names expected by the model's preprocessor input_df = pd.DataFrame(data) # Make predictions using the loaded model # The loaded model object (which is a Pipeline) handles both preprocessing and prediction predictions = model.predict(input_df) # Convert the numpy array of predictions to a list for JSON serialization predictions_list = predictions.tolist() # Return the predictions as a JSON response return jsonify({"predictions": predictions_list}) except Exception as e: # Return an error response if an exception occurs during processing (e.g., invalid input data) return jsonify({"error": f"An error occurred during prediction: {e}"}), 400 # Use 400 for client-side errors # This block is for local development and testing only. # When deployed with Gunicorn on Hugging Face Spaces, this code is not executed. if __name__ == "__main__": # Run the Flask app locally on port 7860 (common for Hugging Face Spaces) # host="0.0.0.0" makes the server accessible externally (needed in Docker containers) # debug=False for production deployment SuperKart_predictions_api.run(host="0.0.0.0", port=7860, debug=False)