Transcriber / app.py
Issamohammed's picture
Update app.py
fd865b6 verified
raw
history blame
1.76 kB
import torch
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
import gradio as gr
from pydub import AudioSegment
import os
# Set device and precision for CPU
device = "cpu"
torch_dtype = torch.float32
# Load KB-Whisper model (Large variant)
model_id = "KBLab/kb-whisper-large"
model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_id, torch_dtype=torch_dtype
).to(device)
processor = AutoProcessor.from_pretrained(model_id)
pipe = pipeline(
"automatic-speech-recognition",
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
device=device,
torch_dtype=torch_dtype,
)
def transcribe(audio_path):
# Handle m4a or other formats by converting to wav
base, ext = os.path.splitext(audio_path)
if ext.lower() != ".wav":
try:
sound = AudioSegment.from_file(audio_path)
audio_converted_path = base + ".converted.wav"
sound.export(audio_converted_path, format="wav")
audio_path = audio_converted_path
except Exception as e:
return f"Error converting audio: {str(e)}"
# Transcribe
try:
result = pipe(audio_path, chunk_length_s=30, generate_kwargs={"task": "transcribe", "language": "sv"})
return result["text"]
except Exception as e:
return f"Transcription failed: {str(e)}"
# Build Gradio interface
gr.Interface(
fn=transcribe,
inputs=gr.Audio(type="filepath", label="Upload Swedish Audio"),
outputs=gr.Textbox(label="Transcribed Text"),
title="KB-Whisper Transcriber (Swedish, Free CPU)",
description="Upload .m4a, .mp3, or .wav files. Transcribes Swedish speech using KBLab's Whisper Large model.",
).launch(share=True)