Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import AutoModelForSeq2SeqLM, ViTTokenizer | |
# Load your pretrained model and tokenizer | |
model_name = "JPeace18/vit-base-patch16-224-in21k-finetuned-lora-food101" # Replace with your model's name | |
tokenizer = ViTTokenizer.from_pretrained(model_name) | |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name) | |
# Define the Gradio interface | |
iface = gr.Interface( | |
fn=generate_answer, | |
inputs=[gr.Textbox(lines=5, placeholder="Ask a question")], | |
outputs="textbox", | |
title="AI Answer Generator", | |
) | |
# Function to generate an answer using your model | |
def generate_answer(question): | |
inputs = tokenizer([question], return_tensors="pt") | |
outputs = model.generate(**inputs) | |
answer = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return answer | |
# Launch the interface | |
iface.launch() | |
# BASH | |
from ipykernel.zmqshell import KernelManager | |
km = KernelManager() | |
km.start_kernel() | |
kernel = km.kernel | |
from IPython.display import HTML | |
code = """ | |
pip install --upgrade transformers | |
pip install --force-reinstall transformers | |
""" | |
output = kernel.execute(code).get('data', '') | |
html = HTML('<pre>{}</pre>'.format(output)) | |
display(html) | |
kernel.shutdown() | |
from transformers import ViTTokenizer | |