|
import sys |
|
sys.path.append('../') |
|
sys.path.append("../submodules") |
|
sys.path.append('../submodules/RoMa') |
|
|
|
from matplotlib import pyplot as plt |
|
from PIL import Image |
|
import torch |
|
import numpy as np |
|
|
|
|
|
from tqdm import tqdm |
|
from scipy.cluster.vq import kmeans, vq |
|
from scipy.spatial.distance import cdist |
|
|
|
import torch.nn.functional as F |
|
from romatch import roma_outdoor, roma_indoor |
|
from utils.sh_utils import RGB2SH |
|
from romatch.utils import get_tuple_transform_ops |
|
|
|
import time |
|
from collections import defaultdict |
|
from tqdm import tqdm |
|
|
|
|
|
def pairwise_distances(matrix): |
|
""" |
|
Computes the pairwise Euclidean distances between all vectors in the input matrix. |
|
|
|
Args: |
|
matrix (torch.Tensor): Input matrix of shape [N, D], where N is the number of vectors and D is the dimensionality. |
|
|
|
Returns: |
|
torch.Tensor: Pairwise distance matrix of shape [N, N]. |
|
""" |
|
|
|
squared_diff = torch.cdist(matrix, matrix, p=2) |
|
return squared_diff |
|
|
|
|
|
def k_closest_vectors(matrix, k): |
|
""" |
|
Finds the k-closest vectors for each vector in the input matrix based on Euclidean distance. |
|
|
|
Args: |
|
matrix (torch.Tensor): Input matrix of shape [N, D], where N is the number of vectors and D is the dimensionality. |
|
k (int): Number of closest vectors to return for each vector. |
|
|
|
Returns: |
|
torch.Tensor: Indices of the k-closest vectors for each vector, excluding the vector itself. |
|
""" |
|
|
|
distances = pairwise_distances(matrix) |
|
|
|
|
|
|
|
distances.fill_diagonal_(float('inf')) |
|
|
|
|
|
_, indices = torch.topk(distances, k, largest=False, dim=1) |
|
|
|
return indices |
|
|
|
|
|
def select_cameras_kmeans(cameras, K): |
|
""" |
|
Selects K cameras from a set using K-means clustering. |
|
|
|
Args: |
|
cameras: NumPy array of shape (N, 16), representing N cameras with their 4x4 homogeneous matrices flattened. |
|
K: Number of clusters (cameras to select). |
|
|
|
Returns: |
|
selected_indices: List of indices of the cameras closest to the cluster centers. |
|
""" |
|
|
|
if not isinstance(cameras, np.ndarray): |
|
cameras = np.asarray(cameras) |
|
|
|
if cameras.shape[1] != 16: |
|
raise ValueError("Each camera must have 16 values corresponding to a flattened 4x4 matrix.") |
|
|
|
|
|
cluster_centers, _ = kmeans(cameras, K) |
|
|
|
|
|
cluster_assignments, _ = vq(cameras, cluster_centers) |
|
|
|
|
|
selected_indices = [] |
|
for k in range(K): |
|
cluster_members = cameras[cluster_assignments == k] |
|
distances = cdist([cluster_centers[k]], cluster_members)[0] |
|
nearest_camera_idx = np.where(cluster_assignments == k)[0][np.argmin(distances)] |
|
selected_indices.append(nearest_camera_idx) |
|
|
|
return selected_indices |
|
|
|
|
|
def compute_warp_and_confidence(viewpoint_cam1, viewpoint_cam2, roma_model, device="cuda", verbose=False, output_dict={}): |
|
""" |
|
Computes the warp and confidence between two viewpoint cameras using the roma_model. |
|
|
|
Args: |
|
viewpoint_cam1: Source viewpoint camera. |
|
viewpoint_cam2: Target viewpoint camera. |
|
roma_model: Pre-trained Roma model for correspondence matching. |
|
device: Device to run the computation on. |
|
verbose: If True, displays the images. |
|
|
|
Returns: |
|
certainty: Confidence tensor. |
|
warp: Warp tensor. |
|
imB: Processed image B as numpy array. |
|
""" |
|
|
|
imA = viewpoint_cam1.original_image.detach().cpu().numpy().transpose(1, 2, 0) |
|
imB = viewpoint_cam2.original_image.detach().cpu().numpy().transpose(1, 2, 0) |
|
imA = Image.fromarray(np.clip(imA * 255, 0, 255).astype(np.uint8)) |
|
imB = Image.fromarray(np.clip(imB * 255, 0, 255).astype(np.uint8)) |
|
|
|
if verbose: |
|
fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(16, 8)) |
|
cax1 = ax[0].imshow(imA) |
|
ax[0].set_title("Image 1") |
|
cax2 = ax[1].imshow(imB) |
|
ax[1].set_title("Image 2") |
|
fig.colorbar(cax1, ax=ax[0]) |
|
fig.colorbar(cax2, ax=ax[1]) |
|
|
|
for axis in ax: |
|
axis.axis('off') |
|
|
|
output_dict[f'image_pair'] = fig |
|
|
|
|
|
ws, hs = roma_model.w_resized, roma_model.h_resized |
|
test_transform = get_tuple_transform_ops(resize=(hs, ws), normalize=True) |
|
im_A, im_B = test_transform((imA, imB)) |
|
batch = {"im_A": im_A[None].to(device), "im_B": im_B[None].to(device)} |
|
|
|
|
|
corresps = roma_model.forward(batch) if not roma_model.symmetric else roma_model.forward_symmetric(batch) |
|
finest_scale = 1 |
|
hs, ws = roma_model.upsample_res if roma_model.upsample_preds else (hs, ws) |
|
|
|
|
|
certainty = corresps[finest_scale]["certainty"] |
|
im_A_to_im_B = corresps[finest_scale]["flow"] |
|
if roma_model.attenuate_cert: |
|
low_res_certainty = F.interpolate( |
|
corresps[16]["certainty"], size=(hs, ws), align_corners=False, mode="bilinear" |
|
) |
|
certainty -= 0.5 * low_res_certainty * (low_res_certainty < 0) |
|
|
|
|
|
if roma_model.upsample_preds: |
|
im_A_to_im_B = F.interpolate( |
|
im_A_to_im_B, size=(hs, ws), align_corners=False, mode="bilinear" |
|
) |
|
certainty = F.interpolate( |
|
certainty, size=(hs, ws), align_corners=False, mode="bilinear" |
|
) |
|
|
|
|
|
im_A_to_im_B = im_A_to_im_B.permute(0, 2, 3, 1) |
|
im_A_coords = torch.stack(torch.meshgrid( |
|
torch.linspace(-1 + 1 / hs, 1 - 1 / hs, hs, device=device), |
|
torch.linspace(-1 + 1 / ws, 1 - 1 / ws, ws, device=device), |
|
indexing='ij' |
|
), dim=0).permute(1, 2, 0).unsqueeze(0).expand(im_A_to_im_B.size(0), -1, -1, -1) |
|
|
|
warp = torch.cat((im_A_coords, im_A_to_im_B), dim=-1) |
|
certainty = certainty.sigmoid() |
|
|
|
return certainty[0, 0], warp[0], np.array(imB) |
|
|
|
|
|
def resize_batch(tensors_3d, tensors_4d, target_shape): |
|
""" |
|
Resizes a batch of tensors with shapes [B, H, W] and [B, H, W, 4] to the target spatial dimensions. |
|
|
|
Args: |
|
tensors_3d: Tensor of shape [B, H, W]. |
|
tensors_4d: Tensor of shape [B, H, W, 4]. |
|
target_shape: Tuple (target_H, target_W) specifying the target spatial dimensions. |
|
|
|
Returns: |
|
resized_tensors_3d: Tensor of shape [B, target_H, target_W]. |
|
resized_tensors_4d: Tensor of shape [B, target_H, target_W, 4]. |
|
""" |
|
target_H, target_W = target_shape |
|
|
|
|
|
resized_tensors_3d = F.interpolate( |
|
tensors_3d.unsqueeze(1), size=(target_H, target_W), mode="bilinear", align_corners=False |
|
).squeeze(1) |
|
|
|
|
|
B, _, _, C = tensors_4d.shape |
|
resized_tensors_4d = F.interpolate( |
|
tensors_4d.permute(0, 3, 1, 2), size=(target_H, target_W), mode="bilinear", align_corners=False |
|
).permute(0, 2, 3, 1) |
|
|
|
return resized_tensors_3d, resized_tensors_4d |
|
|
|
|
|
def aggregate_confidences_and_warps(viewpoint_stack, closest_indices, roma_model, source_idx, verbose=False, output_dict={}): |
|
""" |
|
Aggregates confidences and warps by iterating over the nearest neighbors of the source viewpoint. |
|
|
|
Args: |
|
viewpoint_stack: Stack of viewpoint cameras. |
|
closest_indices: Indices of the nearest neighbors for each viewpoint. |
|
roma_model: Pre-trained Roma model. |
|
source_idx: Index of the source viewpoint. |
|
verbose: If True, displays intermediate results. |
|
|
|
Returns: |
|
certainties_max: Aggregated maximum confidences. |
|
warps_max: Aggregated warps corresponding to maximum confidences. |
|
certainties_max_idcs: Pixel-wise index of the image from which we taken the best matching. |
|
imB_compound: List of the neighboring images. |
|
""" |
|
certainties_all, warps_all, imB_compound = [], [], [] |
|
|
|
for nn in tqdm(closest_indices[source_idx]): |
|
|
|
viewpoint_cam1 = viewpoint_stack[source_idx] |
|
viewpoint_cam2 = viewpoint_stack[nn] |
|
|
|
certainty, warp, imB = compute_warp_and_confidence(viewpoint_cam1, viewpoint_cam2, roma_model, verbose=verbose, output_dict=output_dict) |
|
certainties_all.append(certainty) |
|
warps_all.append(warp) |
|
imB_compound.append(imB) |
|
|
|
certainties_all = torch.stack(certainties_all, dim=0) |
|
target_shape = imB_compound[0].shape[:2] |
|
if verbose: |
|
print("certainties_all.shape:", certainties_all.shape) |
|
print("torch.stack(warps_all, dim=0).shape:", torch.stack(warps_all, dim=0).shape) |
|
print("target_shape:", target_shape) |
|
|
|
certainties_all_resized, warps_all_resized = resize_batch(certainties_all, |
|
torch.stack(warps_all, dim=0), |
|
target_shape |
|
) |
|
|
|
if verbose: |
|
print("warps_all_resized.shape:", warps_all_resized.shape) |
|
for n, cert in enumerate(certainties_all): |
|
fig, ax = plt.subplots() |
|
cax = ax.imshow(cert.cpu().numpy(), cmap='viridis') |
|
fig.colorbar(cax, ax=ax) |
|
ax.set_title("Pixel-wise Confidence") |
|
output_dict[f'certainty_{n}'] = fig |
|
|
|
for n, warp in enumerate(warps_all): |
|
fig, ax = plt.subplots() |
|
cax = ax.imshow(warp.cpu().numpy()[:, :, :3], cmap='viridis') |
|
fig.colorbar(cax, ax=ax) |
|
ax.set_title("Pixel-wise warp") |
|
output_dict[f'warp_resized_{n}'] = fig |
|
|
|
for n, cert in enumerate(certainties_all_resized): |
|
fig, ax = plt.subplots() |
|
cax = ax.imshow(cert.cpu().numpy(), cmap='viridis') |
|
fig.colorbar(cax, ax=ax) |
|
ax.set_title("Pixel-wise Confidence resized") |
|
output_dict[f'certainty_resized_{n}'] = fig |
|
|
|
for n, warp in enumerate(warps_all_resized): |
|
fig, ax = plt.subplots() |
|
cax = ax.imshow(warp.cpu().numpy()[:, :, :3], cmap='viridis') |
|
fig.colorbar(cax, ax=ax) |
|
ax.set_title("Pixel-wise warp resized") |
|
output_dict[f'warp_resized_{n}'] = fig |
|
|
|
certainties_max, certainties_max_idcs = torch.max(certainties_all_resized, dim=0) |
|
H, W = certainties_max.shape |
|
|
|
warps_max = warps_all_resized[certainties_max_idcs, torch.arange(H).unsqueeze(1), torch.arange(W)] |
|
|
|
imA = viewpoint_cam1.original_image.detach().cpu().numpy().transpose(1, 2, 0) |
|
imA = np.clip(imA * 255, 0, 255).astype(np.uint8) |
|
|
|
return certainties_max, warps_max, certainties_max_idcs, imA, imB_compound, certainties_all_resized, warps_all_resized |
|
|
|
|
|
|
|
def extract_keypoints_and_colors(imA, imB_compound, certainties_max, certainties_max_idcs, matches, roma_model, |
|
verbose=False, output_dict={}): |
|
""" |
|
Extracts keypoints and corresponding colors from the source image (imA) and multiple target images (imB_compound). |
|
|
|
Args: |
|
imA: Source image as a NumPy array (H_A, W_A, C). |
|
imB_compound: List of target images as NumPy arrays [(H_B, W_B, C), ...]. |
|
certainties_max: Tensor of pixel-wise maximum confidences. |
|
certainties_max_idcs: Tensor of pixel-wise indices for the best matches. |
|
matches: Matches in normalized coordinates. |
|
roma_model: Roma model instance for keypoint operations. |
|
verbose: if to show intermediate outputs and visualize results |
|
|
|
Returns: |
|
kptsA_np: Keypoints in imA in normalized coordinates. |
|
kptsB_np: Keypoints in imB in normalized coordinates. |
|
kptsA_color: Colors of keypoints in imA. |
|
kptsB_color: Colors of keypoints in imB based on certainties_max_idcs. |
|
""" |
|
H_A, W_A, _ = imA.shape |
|
H, W = certainties_max.shape |
|
|
|
|
|
kptsA, kptsB = roma_model.to_pixel_coordinates( |
|
matches, W_A, H_A, H, W |
|
) |
|
|
|
kptsA_np = kptsA.detach().cpu().numpy() |
|
kptsB_np = kptsB.detach().cpu().numpy() |
|
kptsA_np = kptsA_np[:, [1, 0]] |
|
|
|
if verbose: |
|
fig, ax = plt.subplots(figsize=(12, 6)) |
|
cax = ax.imshow(imA) |
|
ax.set_title("Reference image, imA") |
|
output_dict[f'reference_image'] = fig |
|
|
|
fig, ax = plt.subplots(figsize=(12, 6)) |
|
cax = ax.imshow(imB_compound[0]) |
|
ax.set_title("Image to compare to image, imB_compound") |
|
output_dict[f'imB_compound'] = fig |
|
|
|
fig, ax = plt.subplots(figsize=(12, 6)) |
|
cax = ax.imshow(np.flipud(imA)) |
|
cax = ax.scatter(kptsA_np[:, 0], H_A - kptsA_np[:, 1], s=.03) |
|
ax.set_title("Keypoints in imA") |
|
ax.set_xlim(0, W_A) |
|
ax.set_ylim(0, H_A) |
|
output_dict[f'kptsA'] = fig |
|
|
|
fig, ax = plt.subplots(figsize=(12, 6)) |
|
cax = ax.imshow(np.flipud(imB_compound[0])) |
|
cax = ax.scatter(kptsB_np[:, 0], H_A - kptsB_np[:, 1], s=.03) |
|
ax.set_title("Keypoints in imB") |
|
ax.set_xlim(0, W_A) |
|
ax.set_ylim(0, H_A) |
|
output_dict[f'kptsB'] = fig |
|
|
|
|
|
|
|
kptsA_np = kptsA.detach().cpu().numpy() |
|
kptsB_np = kptsB.detach().cpu().numpy() |
|
|
|
|
|
|
|
kptsA_x = np.round(kptsA_np[:, 0] / 1.).astype(int) |
|
kptsA_y = np.round(kptsA_np[:, 1] / 1.).astype(int) |
|
kptsA_color = imA[np.clip(kptsA_x, 0, H - 1), np.clip(kptsA_y, 0, W - 1)] |
|
|
|
|
|
imB_compound_np = np.stack(imB_compound, axis=0) |
|
H_B, W_B, _ = imB_compound[0].shape |
|
|
|
|
|
imB_np = imB_compound_np[ |
|
certainties_max_idcs.detach().cpu().numpy(), |
|
np.arange(H).reshape(-1, 1), |
|
np.arange(W) |
|
] |
|
|
|
if verbose: |
|
print("imB_np.shape:", imB_np.shape) |
|
print("imB_np:", imB_np) |
|
fig, ax = plt.subplots(figsize=(12, 6)) |
|
cax = ax.imshow(np.flipud(imB_np)) |
|
cax = ax.scatter(kptsB_np[:, 0], H_A - kptsB_np[:, 1], s=.03) |
|
ax.set_title("np.flipud(imB_np[0]") |
|
ax.set_xlim(0, W_A) |
|
ax.set_ylim(0, H_A) |
|
output_dict[f'np.flipud(imB_np[0]'] = fig |
|
|
|
|
|
kptsB_x = np.round(kptsB_np[:, 0]).astype(int) |
|
kptsB_y = np.round(kptsB_np[:, 1]).astype(int) |
|
|
|
certainties_max_idcs_np = certainties_max_idcs.detach().cpu().numpy() |
|
kptsB_proj_matrices_idx = certainties_max_idcs_np[np.clip(kptsA_x, 0, H - 1), np.clip(kptsA_y, 0, W - 1)] |
|
kptsB_color = imB_compound_np[kptsB_proj_matrices_idx, np.clip(kptsB_y, 0, H - 1), np.clip(kptsB_x, 0, W - 1)] |
|
|
|
|
|
kptsA_np[:, 0] = kptsA_np[:, 0] / H * 2.0 - 1.0 |
|
kptsA_np[:, 1] = kptsA_np[:, 1] / W * 2.0 - 1.0 |
|
kptsB_np[:, 0] = kptsB_np[:, 0] / W_B * 2.0 - 1.0 |
|
kptsB_np[:, 1] = kptsB_np[:, 1] / H_B * 2.0 - 1.0 |
|
|
|
return kptsA_np[:, [1, 0]], kptsB_np, kptsB_proj_matrices_idx, kptsA_color, kptsB_color |
|
|
|
def prepare_tensor(input_array, device): |
|
""" |
|
Converts an input array to a torch tensor, clones it, and detaches it for safe computation. |
|
Args: |
|
input_array (array-like): The input array to convert. |
|
device (str or torch.device): The device to move the tensor to. |
|
Returns: |
|
torch.Tensor: A detached tensor clone of the input array on the specified device. |
|
""" |
|
if not isinstance(input_array, torch.Tensor): |
|
return torch.tensor(input_array, dtype=torch.float32).to(device).clone().detach() |
|
return input_array.clone().detach().to(device).to(torch.float32) |
|
|
|
def triangulate_points(P1, P2, k1_x, k1_y, k2_x, k2_y, device="cuda"): |
|
""" |
|
Solves for a batch of 3D points given batches of projection matrices and corresponding image points. |
|
|
|
Parameters: |
|
- P1, P2: Tensors of projection matrices of size (batch_size, 4, 4) or (4, 4) |
|
- k1_x, k1_y: Tensors of shape (batch_size,) |
|
- k2_x, k2_y: Tensors of shape (batch_size,) |
|
|
|
Returns: |
|
- X: A tensor containing the 3D homogeneous coordinates, shape (batch_size, 4) |
|
""" |
|
EPS = 1e-4 |
|
|
|
|
|
P1 = prepare_tensor(P1, device) |
|
P2 = prepare_tensor(P2, device) |
|
k1_x = prepare_tensor(k1_x, device) |
|
k1_y = prepare_tensor(k1_y, device) |
|
k2_x = prepare_tensor(k2_x, device) |
|
k2_y = prepare_tensor(k2_y, device) |
|
batch_size = k1_x.shape[0] |
|
|
|
|
|
if P1.ndim == 2: |
|
P1 = P1.unsqueeze(0).expand(batch_size, -1, -1) |
|
if P2.ndim == 2: |
|
P2 = P2.unsqueeze(0).expand(batch_size, -1, -1) |
|
|
|
|
|
P1_0 = P1[:, :, 0] |
|
P1_1 = P1[:, :, 1] |
|
P1_2 = P1[:, :, 2] |
|
|
|
P2_0 = P2[:, :, 0] |
|
P2_1 = P2[:, :, 1] |
|
P2_2 = P2[:, :, 2] |
|
|
|
|
|
k1_x = k1_x.view(-1, 1) |
|
k1_y = k1_y.view(-1, 1) |
|
k2_x = k2_x.view(-1, 1) |
|
k2_y = k2_y.view(-1, 1) |
|
|
|
|
|
|
|
A1 = P1_0 - k1_x * P1_2 |
|
A2 = P1_1 - k1_y * P1_2 |
|
|
|
A3 = P2_0 - k2_x * P2_2 |
|
A4 = P2_1 - k2_y * P2_2 |
|
|
|
|
|
A = torch.stack([A1, A2, A3, A4], dim=1) |
|
|
|
|
|
b = -A[:, :, 3] |
|
A_reduced = A[:, :, :3] |
|
|
|
|
|
X_xyz = torch.linalg.lstsq(A_reduced, b.unsqueeze(2)).solution.squeeze(2) |
|
|
|
|
|
ones = torch.ones((batch_size, 1), dtype=torch.float32, device=X_xyz.device) |
|
X = torch.cat([X_xyz, ones], dim=1) |
|
|
|
|
|
seeked_splats_proj1 = (X.unsqueeze(1) @ P1).squeeze(1) |
|
seeked_splats_proj1 = seeked_splats_proj1 / (EPS + seeked_splats_proj1[:, [3]]) |
|
seeked_splats_proj2 = (X.unsqueeze(1) @ P2).squeeze(1) |
|
seeked_splats_proj2 = seeked_splats_proj2 / (EPS + seeked_splats_proj2[:, [3]]) |
|
proj1_target = torch.concat([k1_x, k1_y], dim=1) |
|
proj2_target = torch.concat([k2_x, k2_y], dim=1) |
|
errors_proj1 = torch.abs(seeked_splats_proj1[:, :2] - proj1_target).sum(1).detach().cpu().numpy() |
|
errors_proj2 = torch.abs(seeked_splats_proj2[:, :2] - proj2_target).sum(1).detach().cpu().numpy() |
|
|
|
return X, errors_proj1, errors_proj2 |
|
|
|
|
|
|
|
def select_best_keypoints( |
|
NNs_triangulated_points, NNs_errors_proj1, NNs_errors_proj2, device="cuda"): |
|
""" |
|
From all the points fitted to keypoints and corresponding colors from the source image (imA) and multiple target images (imB_compound). |
|
|
|
Args: |
|
NNs_triangulated_points: torch tensor with keypoints coordinates (num_nns, num_points, dim). dim can be arbitrary, |
|
usually 3 or 4(for homogeneous representation). |
|
NNs_errors_proj1: numpy array with projection error of the estimated keypoint on the reference frame (num_nns, num_points). |
|
NNs_errors_proj2: numpy array with projection error of the estimated keypoint on the neighbor frame (num_nns, num_points). |
|
Returns: |
|
selected_keypoints: keypoints with the best score. |
|
""" |
|
|
|
NNs_errors_proj = np.maximum(NNs_errors_proj1, NNs_errors_proj2) |
|
|
|
|
|
indices = torch.from_numpy(np.argmin(NNs_errors_proj, axis=0)).long().to(device) |
|
|
|
|
|
n_indices = torch.arange(NNs_triangulated_points.shape[1]).long().to(device) |
|
|
|
|
|
NNs_triangulated_points_selected = NNs_triangulated_points[indices, n_indices, :] |
|
|
|
return NNs_triangulated_points_selected, np.min(NNs_errors_proj, axis=0) |
|
|
|
|
|
|
|
def init_gaussians_with_corr(gaussians, scene, cfg, device, verbose = False, roma_model=None): |
|
""" |
|
For a given input gaussians and a scene we instantiate a RoMa model(change to indoors if necessary) and process scene |
|
training frames to extract correspondences. Those are used to initialize gaussians |
|
Args: |
|
gaussians: object gaussians of the class GaussianModel that we need to enrich with gaussians. |
|
scene: object of the Scene class. |
|
cfg: configuration. Use init_wC |
|
Returns: |
|
gaussians: inplace transforms object gaussians of the class GaussianModel. |
|
|
|
""" |
|
if roma_model is None: |
|
if cfg.roma_model == "indoors": |
|
roma_model = roma_indoor(device=device) |
|
else: |
|
roma_model = roma_outdoor(device=device) |
|
roma_model.upsample_preds = False |
|
roma_model.symmetric = False |
|
M = cfg.matches_per_ref |
|
upper_thresh = roma_model.sample_thresh |
|
scaling_factor = cfg.scaling_factor |
|
expansion_factor = 1 |
|
keypoint_fit_error_tolerance = cfg.proj_err_tolerance |
|
visualizations = {} |
|
viewpoint_stack = scene.getTrainCameras().copy() |
|
NUM_REFERENCE_FRAMES = min(cfg.num_refs, len(viewpoint_stack)) |
|
NUM_NNS_PER_REFERENCE = min(cfg.nns_per_ref , len(viewpoint_stack)) |
|
|
|
viewpoint_cam_all = torch.stack([x.world_view_transform.flatten() for x in viewpoint_stack], axis=0) |
|
|
|
selected_indices = select_cameras_kmeans(cameras=viewpoint_cam_all.detach().cpu().numpy(), K=NUM_REFERENCE_FRAMES) |
|
selected_indices = sorted(selected_indices) |
|
|
|
|
|
|
|
viewpoint_cam_all = torch.stack([x.world_view_transform.flatten() for x in viewpoint_stack], axis=0) |
|
closest_indices = k_closest_vectors(viewpoint_cam_all, NUM_NNS_PER_REFERENCE) |
|
if verbose: print("Indices of k-closest vectors for each vector:\n", closest_indices) |
|
|
|
closest_indices_selected = closest_indices[:, :].detach().cpu().numpy() |
|
|
|
all_new_xyz = [] |
|
all_new_features_dc = [] |
|
all_new_features_rest = [] |
|
all_new_opacities = [] |
|
all_new_scaling = [] |
|
all_new_rotation = [] |
|
|
|
|
|
with torch.no_grad(): |
|
viewpoint_cam1 = viewpoint_stack[0] |
|
viewpoint_cam2 = viewpoint_stack[1] |
|
imA = viewpoint_cam1.original_image.detach().cpu().numpy().transpose(1, 2, 0) |
|
imB = viewpoint_cam2.original_image.detach().cpu().numpy().transpose(1, 2, 0) |
|
imA = Image.fromarray(np.clip(imA * 255, 0, 255).astype(np.uint8)) |
|
imB = Image.fromarray(np.clip(imB * 255, 0, 255).astype(np.uint8)) |
|
warp, certainty_warp = roma_model.match(imA, imB, device=device) |
|
print("Once run full roma_model.match warp.shape:", warp.shape) |
|
print("Once run full roma_model.match certainty_warp.shape:", certainty_warp.shape) |
|
del warp, certainty_warp |
|
torch.cuda.empty_cache() |
|
|
|
for source_idx in tqdm(sorted(selected_indices)): |
|
|
|
with torch.no_grad(): |
|
|
|
certainties_max, warps_max, certainties_max_idcs, imA, imB_compound, certainties_all, warps_all = aggregate_confidences_and_warps( |
|
viewpoint_stack=viewpoint_stack, |
|
closest_indices=closest_indices_selected, |
|
roma_model=roma_model, |
|
source_idx=source_idx, |
|
verbose=verbose, output_dict=visualizations |
|
) |
|
|
|
|
|
|
|
with torch.no_grad(): |
|
matches = warps_max |
|
certainty = certainties_max |
|
certainty = certainty.clone() |
|
certainty[certainty > upper_thresh] = 1 |
|
matches, certainty = ( |
|
matches.reshape(-1, 4), |
|
certainty.reshape(-1), |
|
) |
|
|
|
|
|
|
|
good_samples = torch.multinomial(certainty, |
|
num_samples=min(expansion_factor * M, len(certainty)), |
|
replacement=False) |
|
|
|
certainties_max, warps_max, certainties_max_idcs, imA, imB_compound, certainties_all, warps_all |
|
reference_image_dict = { |
|
"ref_image": imA, |
|
"NNs_images": imB_compound, |
|
"certainties_all": certainties_all, |
|
"warps_all": warps_all, |
|
"triangulated_points": [], |
|
"triangulated_points_errors_proj1": [], |
|
"triangulated_points_errors_proj2": [] |
|
|
|
} |
|
with torch.no_grad(): |
|
for NN_idx in tqdm(range(len(warps_all))): |
|
matches_NN = warps_all[NN_idx].reshape(-1, 4)[good_samples] |
|
|
|
|
|
kptsA_np, kptsB_np, kptsB_proj_matrices_idcs, kptsA_color, kptsB_color = extract_keypoints_and_colors( |
|
imA, imB_compound, certainties_max, certainties_max_idcs, matches_NN, roma_model |
|
) |
|
|
|
proj_matrices_A = viewpoint_stack[source_idx].full_proj_transform |
|
proj_matrices_B = viewpoint_stack[closest_indices_selected[source_idx, NN_idx]].full_proj_transform |
|
triangulated_points, triangulated_points_errors_proj1, triangulated_points_errors_proj2 = triangulate_points( |
|
P1=torch.stack([proj_matrices_A] * M, axis=0), |
|
P2=torch.stack([proj_matrices_B] * M, axis=0), |
|
k1_x=kptsA_np[:M, 0], k1_y=kptsA_np[:M, 1], |
|
k2_x=kptsB_np[:M, 0], k2_y=kptsB_np[:M, 1]) |
|
|
|
reference_image_dict["triangulated_points"].append(triangulated_points) |
|
reference_image_dict["triangulated_points_errors_proj1"].append(triangulated_points_errors_proj1) |
|
reference_image_dict["triangulated_points_errors_proj2"].append(triangulated_points_errors_proj2) |
|
|
|
with torch.no_grad(): |
|
NNs_triangulated_points_selected, NNs_triangulated_points_selected_proj_errors = select_best_keypoints( |
|
NNs_triangulated_points=torch.stack(reference_image_dict["triangulated_points"], dim=0), |
|
NNs_errors_proj1=np.stack(reference_image_dict["triangulated_points_errors_proj1"], axis=0), |
|
NNs_errors_proj2=np.stack(reference_image_dict["triangulated_points_errors_proj2"], axis=0)) |
|
|
|
|
|
viewpoint_cam1 = viewpoint_stack[source_idx] |
|
N = len(NNs_triangulated_points_selected) |
|
with torch.no_grad(): |
|
new_xyz = NNs_triangulated_points_selected[:, :-1] |
|
all_new_xyz.append(new_xyz) |
|
all_new_features_dc.append(RGB2SH(torch.tensor(kptsA_color.astype(np.float32) / 255.)).unsqueeze(1)) |
|
all_new_features_rest.append(torch.stack([gaussians._features_rest[-1].clone().detach() * 0.] * N, dim=0)) |
|
|
|
|
|
mask_bad_points = torch.tensor( |
|
NNs_triangulated_points_selected_proj_errors > keypoint_fit_error_tolerance, |
|
dtype=torch.float32).unsqueeze(1).to(device) |
|
all_new_opacities.append(torch.stack([gaussians._opacity[-1].clone().detach()] * N, dim=0) * 0. - mask_bad_points * (1e1)) |
|
|
|
dist_points_to_cam1 = torch.linalg.norm(viewpoint_cam1.camera_center.clone().detach() - new_xyz, |
|
dim=1, ord=2) |
|
|
|
all_new_scaling.append(gaussians.scaling_inverse_activation((dist_points_to_cam1 * scaling_factor).unsqueeze(1).repeat(1, 3))) |
|
all_new_rotation.append(torch.stack([gaussians._rotation[-1].clone().detach()] * N, dim=0)) |
|
|
|
all_new_xyz = torch.cat(all_new_xyz, dim=0) |
|
all_new_features_dc = torch.cat(all_new_features_dc, dim=0) |
|
new_tmp_radii = torch.zeros(all_new_xyz.shape[0]) |
|
prune_mask = torch.ones(all_new_xyz.shape[0], dtype=torch.bool) |
|
|
|
gaussians.densification_postfix(all_new_xyz[prune_mask].to(device), |
|
all_new_features_dc[prune_mask].to(device), |
|
torch.cat(all_new_features_rest, dim=0)[prune_mask].to(device), |
|
torch.cat(all_new_opacities, dim=0)[prune_mask].to(device), |
|
torch.cat(all_new_scaling, dim=0)[prune_mask].to(device), |
|
torch.cat(all_new_rotation, dim=0)[prune_mask].to(device), |
|
new_tmp_radii[prune_mask].to(device)) |
|
|
|
return viewpoint_stack, closest_indices_selected, visualizations |
|
|
|
|
|
|
|
def extract_keypoints_and_colors_single(imA, imB, matches, roma_model, verbose=False, output_dict={}): |
|
""" |
|
Extracts keypoints and corresponding colors from a source image (imA) and a single target image (imB). |
|
|
|
Args: |
|
imA: Source image as a NumPy array (H_A, W_A, C). |
|
imB: Target image as a NumPy array (H_B, W_B, C). |
|
matches: Matches in normalized coordinates (torch.Tensor). |
|
roma_model: Roma model instance for keypoint operations. |
|
verbose: If True, outputs intermediate visualizations. |
|
Returns: |
|
kptsA_np: Keypoints in imA (normalized). |
|
kptsB_np: Keypoints in imB (normalized). |
|
kptsA_color: Colors of keypoints in imA. |
|
kptsB_color: Colors of keypoints in imB. |
|
""" |
|
H_A, W_A, _ = imA.shape |
|
H_B, W_B, _ = imB.shape |
|
|
|
|
|
|
|
kptsA = matches[:, :2] |
|
kptsB = matches[:, 2:] |
|
|
|
|
|
kptsA_pix = torch.zeros_like(kptsA) |
|
kptsB_pix = torch.zeros_like(kptsB) |
|
|
|
|
|
kptsA_pix[:, 0] = (kptsA[:, 0] + 1) * (W_A - 1) / 2 |
|
kptsA_pix[:, 1] = (kptsA[:, 1] + 1) * (H_A - 1) / 2 |
|
|
|
kptsB_pix[:, 0] = (kptsB[:, 0] + 1) * (W_B - 1) / 2 |
|
kptsB_pix[:, 1] = (kptsB[:, 1] + 1) * (H_B - 1) / 2 |
|
|
|
kptsA_np = kptsA_pix.detach().cpu().numpy() |
|
kptsB_np = kptsB_pix.detach().cpu().numpy() |
|
|
|
|
|
kptsA_x = np.round(kptsA_np[:, 0]).astype(int) |
|
kptsA_y = np.round(kptsA_np[:, 1]).astype(int) |
|
kptsB_x = np.round(kptsB_np[:, 0]).astype(int) |
|
kptsB_y = np.round(kptsB_np[:, 1]).astype(int) |
|
|
|
kptsA_color = imA[np.clip(kptsA_y, 0, H_A-1), np.clip(kptsA_x, 0, W_A-1)] |
|
kptsB_color = imB[np.clip(kptsB_y, 0, H_B-1), np.clip(kptsB_x, 0, W_B-1)] |
|
|
|
|
|
kptsA_np_norm = np.zeros_like(kptsA_np) |
|
kptsB_np_norm = np.zeros_like(kptsB_np) |
|
|
|
kptsA_np_norm[:, 0] = kptsA_np[:, 0] / (W_A - 1) * 2.0 - 1.0 |
|
kptsA_np_norm[:, 1] = kptsA_np[:, 1] / (H_A - 1) * 2.0 - 1.0 |
|
|
|
kptsB_np_norm[:, 0] = kptsB_np[:, 0] / (W_B - 1) * 2.0 - 1.0 |
|
kptsB_np_norm[:, 1] = kptsB_np[:, 1] / (H_B - 1) * 2.0 - 1.0 |
|
|
|
return kptsA_np_norm, kptsB_np_norm, kptsA_color, kptsB_color |
|
|
|
|
|
|
|
def init_gaussians_with_corr_fast(gaussians, scene, cfg, device, verbose=False, roma_model=None): |
|
timings = defaultdict(list) |
|
|
|
if roma_model is None: |
|
if cfg.roma_model == "indoors": |
|
roma_model = roma_indoor(device=device) |
|
else: |
|
roma_model = roma_outdoor(device=device) |
|
roma_model.upsample_preds = False |
|
roma_model.symmetric = False |
|
|
|
M = cfg.matches_per_ref |
|
upper_thresh = roma_model.sample_thresh |
|
scaling_factor = cfg.scaling_factor |
|
expansion_factor = 1 |
|
keypoint_fit_error_tolerance = cfg.proj_err_tolerance |
|
visualizations = {} |
|
viewpoint_stack = scene.getTrainCameras().copy() |
|
NUM_REFERENCE_FRAMES = min(cfg.num_refs, len(viewpoint_stack)) |
|
NUM_NNS_PER_REFERENCE = 1 |
|
|
|
viewpoint_cam_all = torch.stack([x.world_view_transform.flatten() for x in viewpoint_stack], axis=0) |
|
|
|
selected_indices = select_cameras_kmeans(cameras=viewpoint_cam_all.detach().cpu().numpy(), K=NUM_REFERENCE_FRAMES) |
|
selected_indices = sorted(selected_indices) |
|
|
|
viewpoint_cam_all = torch.stack([x.world_view_transform.flatten() for x in viewpoint_stack], axis=0) |
|
closest_indices = k_closest_vectors(viewpoint_cam_all, NUM_NNS_PER_REFERENCE) |
|
closest_indices_selected = closest_indices[:, :].detach().cpu().numpy() |
|
|
|
all_new_xyz = [] |
|
all_new_features_dc = [] |
|
all_new_features_rest = [] |
|
all_new_opacities = [] |
|
all_new_scaling = [] |
|
all_new_rotation = [] |
|
|
|
|
|
with torch.no_grad(): |
|
viewpoint_cam1 = viewpoint_stack[0] |
|
viewpoint_cam2 = viewpoint_stack[1] |
|
imA = viewpoint_cam1.original_image.detach().cpu().numpy().transpose(1, 2, 0) |
|
imB = viewpoint_cam2.original_image.detach().cpu().numpy().transpose(1, 2, 0) |
|
imA = Image.fromarray(np.clip(imA * 255, 0, 255).astype(np.uint8)) |
|
imB = Image.fromarray(np.clip(imB * 255, 0, 255).astype(np.uint8)) |
|
warp, certainty_warp = roma_model.match(imA, imB, device=device) |
|
del warp, certainty_warp |
|
torch.cuda.empty_cache() |
|
|
|
|
|
for source_idx in tqdm(sorted(selected_indices), desc="Profiling source frames"): |
|
|
|
|
|
start = time.time() |
|
viewpoint_cam1 = viewpoint_stack[source_idx] |
|
NNs=closest_indices_selected.shape[1] |
|
viewpoint_cam2 = viewpoint_stack[closest_indices_selected[source_idx, np.random.randint(NNs)]] |
|
imA = viewpoint_cam1.original_image.detach().cpu().numpy().transpose(1, 2, 0) |
|
imB = viewpoint_cam2.original_image.detach().cpu().numpy().transpose(1, 2, 0) |
|
imA = Image.fromarray(np.clip(imA * 255, 0, 255).astype(np.uint8)) |
|
imB = Image.fromarray(np.clip(imB * 255, 0, 255).astype(np.uint8)) |
|
warp, certainty_warp = roma_model.match(imA, imB, device=device) |
|
|
|
certainties_max = certainty_warp |
|
timings['aggregation_warp_certainty'].append(time.time() - start) |
|
|
|
|
|
start = time.time() |
|
certainty = certainties_max.reshape(-1).clone() |
|
certainty[certainty > upper_thresh] = 1 |
|
good_samples = torch.multinomial(certainty, num_samples=min(expansion_factor * M, len(certainty)), replacement=False) |
|
timings['good_samples_selection'].append(time.time() - start) |
|
|
|
|
|
reference_image_dict = { |
|
"triangulated_points": [], |
|
"triangulated_points_errors_proj1": [], |
|
"triangulated_points_errors_proj2": [] |
|
} |
|
|
|
start = time.time() |
|
matches_NN = warp.reshape(-1, 4)[good_samples] |
|
|
|
|
|
kptsA_np, kptsB_np, kptsA_color, kptsB_color = extract_keypoints_and_colors_single( |
|
np.array(imA).astype(np.uint8), |
|
np.array(imB).astype(np.uint8), |
|
matches_NN, |
|
roma_model |
|
) |
|
|
|
proj_matrices_A = viewpoint_stack[source_idx].full_proj_transform |
|
proj_matrices_B = viewpoint_stack[closest_indices_selected[source_idx, 0]].full_proj_transform |
|
|
|
triangulated_points, triangulated_points_errors_proj1, triangulated_points_errors_proj2 = triangulate_points( |
|
P1=torch.stack([proj_matrices_A] * M, axis=0), |
|
P2=torch.stack([proj_matrices_B] * M, axis=0), |
|
k1_x=kptsA_np[:M, 0], k1_y=kptsA_np[:M, 1], |
|
k2_x=kptsB_np[:M, 0], k2_y=kptsB_np[:M, 1]) |
|
|
|
reference_image_dict["triangulated_points"].append(triangulated_points) |
|
reference_image_dict["triangulated_points_errors_proj1"].append(triangulated_points_errors_proj1) |
|
reference_image_dict["triangulated_points_errors_proj2"].append(triangulated_points_errors_proj2) |
|
timings['triangulation_per_NN'].append(time.time() - start) |
|
|
|
|
|
start = time.time() |
|
NNs_triangulated_points_selected, NNs_triangulated_points_selected_proj_errors = select_best_keypoints( |
|
NNs_triangulated_points=torch.stack(reference_image_dict["triangulated_points"], dim=0), |
|
NNs_errors_proj1=np.stack(reference_image_dict["triangulated_points_errors_proj1"], axis=0), |
|
NNs_errors_proj2=np.stack(reference_image_dict["triangulated_points_errors_proj2"], axis=0)) |
|
timings['select_best_keypoints'].append(time.time() - start) |
|
|
|
|
|
start = time.time() |
|
viewpoint_cam1 = viewpoint_stack[source_idx] |
|
N = len(NNs_triangulated_points_selected) |
|
new_xyz = NNs_triangulated_points_selected[:, :-1] |
|
all_new_xyz.append(new_xyz) |
|
all_new_features_dc.append(RGB2SH(torch.tensor(kptsA_color.astype(np.float32) / 255.)).unsqueeze(1)) |
|
all_new_features_rest.append(torch.stack([gaussians._features_rest[-1].clone().detach() * 0.] * N, dim=0)) |
|
|
|
mask_bad_points = torch.tensor( |
|
NNs_triangulated_points_selected_proj_errors > keypoint_fit_error_tolerance, |
|
dtype=torch.float32).unsqueeze(1).to(device) |
|
|
|
all_new_opacities.append(torch.stack([gaussians._opacity[-1].clone().detach()] * N, dim=0) * 0. - mask_bad_points * (1e1)) |
|
|
|
dist_points_to_cam1 = torch.linalg.norm(viewpoint_cam1.camera_center.clone().detach() - new_xyz, dim=1, ord=2) |
|
all_new_scaling.append(gaussians.scaling_inverse_activation((dist_points_to_cam1 * scaling_factor).unsqueeze(1).repeat(1, 3))) |
|
all_new_rotation.append(torch.stack([gaussians._rotation[-1].clone().detach()] * N, dim=0)) |
|
timings['save_gaussians'].append(time.time() - start) |
|
|
|
|
|
start = time.time() |
|
all_new_xyz = torch.cat(all_new_xyz, dim=0) |
|
all_new_features_dc = torch.cat(all_new_features_dc, dim=0) |
|
new_tmp_radii = torch.zeros(all_new_xyz.shape[0]) |
|
prune_mask = torch.ones(all_new_xyz.shape[0], dtype=torch.bool) |
|
|
|
gaussians.densification_postfix( |
|
all_new_xyz[prune_mask].to(device), |
|
all_new_features_dc[prune_mask].to(device), |
|
torch.cat(all_new_features_rest, dim=0)[prune_mask].to(device), |
|
torch.cat(all_new_opacities, dim=0)[prune_mask].to(device), |
|
torch.cat(all_new_scaling, dim=0)[prune_mask].to(device), |
|
torch.cat(all_new_rotation, dim=0)[prune_mask].to(device), |
|
new_tmp_radii[prune_mask].to(device) |
|
) |
|
timings['final_densification_postfix'].append(time.time() - start) |
|
|
|
|
|
print("\n=== Profiling Summary (average per frame) ===") |
|
for key, times in timings.items(): |
|
print(f"{key:35s}: {sum(times) / len(times):.4f} sec (total {sum(times):.2f} sec)") |
|
|
|
return viewpoint_stack, closest_indices_selected, visualizations |