|
|
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from torch.autograd import Variable |
|
from math import exp |
|
|
|
def l1_loss(network_output, gt, mean=True): |
|
return torch.abs((network_output - gt)).mean() if mean else torch.abs((network_output - gt)) |
|
|
|
def l2_loss(network_output, gt): |
|
return ((network_output - gt) ** 2).mean() |
|
|
|
def gaussian(window_size, sigma): |
|
gauss = torch.Tensor([exp(-(x - window_size // 2) ** 2 / float(2 * sigma ** 2)) for x in range(window_size)]) |
|
return gauss / gauss.sum() |
|
|
|
def create_window(window_size, channel): |
|
_1D_window = gaussian(window_size, 1.5).unsqueeze(1) |
|
_2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0) |
|
window = Variable(_2D_window.expand(channel, 1, window_size, window_size).contiguous()) |
|
return window |
|
|
|
def ssim(img1, img2, window_size=11, size_average=True, mask = None): |
|
channel = img1.size(-3) |
|
window = create_window(window_size, channel) |
|
|
|
if img1.is_cuda: |
|
window = window.cuda(img1.get_device()) |
|
window = window.type_as(img1) |
|
|
|
return _ssim(img1, img2, window, window_size, channel, size_average, mask) |
|
|
|
def _ssim(img1, img2, window, window_size, channel, size_average=True, mask = None): |
|
mu1 = F.conv2d(img1, window, padding=window_size // 2, groups=channel) |
|
mu2 = F.conv2d(img2, window, padding=window_size // 2, groups=channel) |
|
|
|
mu1_sq = mu1.pow(2) |
|
mu2_sq = mu2.pow(2) |
|
mu1_mu2 = mu1 * mu2 |
|
|
|
sigma1_sq = F.conv2d(img1 * img1, window, padding=window_size // 2, groups=channel) - mu1_sq |
|
sigma2_sq = F.conv2d(img2 * img2, window, padding=window_size // 2, groups=channel) - mu2_sq |
|
sigma12 = F.conv2d(img1 * img2, window, padding=window_size // 2, groups=channel) - mu1_mu2 |
|
|
|
C1 = 0.01 ** 2 |
|
C2 = 0.03 ** 2 |
|
|
|
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2)) |
|
|
|
if mask is not None: |
|
ssim_map = ssim_map * mask |
|
|
|
if size_average: |
|
return ssim_map.mean() |
|
else: |
|
return ssim_map.mean(1).mean(1).mean(1) |
|
|
|
|
|
def mse(img1, img2): |
|
return (((img1 - img2)) ** 2).view(img1.shape[0], -1).mean(1, keepdim=True) |
|
|
|
def psnr(img1, img2): |
|
""" |
|
Computes the Peak Signal-to-Noise Ratio (PSNR) between two single images. NOT BATCHED! |
|
Args: |
|
img1 (torch.Tensor): The first image tensor, with pixel values scaled between 0 and 1. |
|
Shape should be (channels, height, width). |
|
img2 (torch.Tensor): The second image tensor with the same shape as img1, used for comparison. |
|
|
|
Returns: |
|
torch.Tensor: A scalar tensor containing the PSNR value in decibels (dB). |
|
""" |
|
mse = (((img1 - img2)) ** 2).view(img1.shape[0], -1).mean(1, keepdim=True) |
|
return 20 * torch.log10(1.0 / torch.sqrt(mse)) |
|
|
|
|
|
def tv_loss(image): |
|
""" |
|
Computes the total variation (TV) loss for an image of shape [3, H, W]. |
|
|
|
Args: |
|
image (torch.Tensor): Input image of shape [3, H, W] |
|
|
|
Returns: |
|
torch.Tensor: Scalar value representing the total variation loss. |
|
""" |
|
|
|
assert image.ndim == 3 and image.shape[0] == 3, "Input must be of shape [3, H, W]" |
|
|
|
|
|
diff_x = torch.abs(image[:, :, 1:] - image[:, :, :-1]) |
|
|
|
|
|
diff_y = torch.abs(image[:, 1:, :] - image[:, :-1, :]) |
|
|
|
|
|
tv_loss_value = torch.mean(diff_x) + torch.mean(diff_y) |
|
|
|
return tv_loss_value |