|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
from scene import Scene |
|
import os |
|
from tqdm import tqdm |
|
from os import makedirs |
|
from gaussian_renderer import render |
|
import torchvision |
|
from utils.general_utils import safe_state |
|
from argparse import ArgumentParser |
|
from arguments import ModelParams, PipelineParams, get_combined_args |
|
from gaussian_renderer import GaussianModel |
|
try: |
|
from diff_gaussian_rasterization import SparseGaussianAdam |
|
SPARSE_ADAM_AVAILABLE = True |
|
except: |
|
SPARSE_ADAM_AVAILABLE = False |
|
|
|
|
|
def render_set(model_path, name, iteration, views, gaussians, pipeline, background, train_test_exp, separate_sh): |
|
render_path = os.path.join(model_path, name, "ours_{}".format(iteration), "renders") |
|
gts_path = os.path.join(model_path, name, "ours_{}".format(iteration), "gt") |
|
|
|
makedirs(render_path, exist_ok=True) |
|
makedirs(gts_path, exist_ok=True) |
|
|
|
for idx, view in enumerate(tqdm(views, desc="Rendering progress")): |
|
rendering = render(view, gaussians, pipeline, background, use_trained_exp=train_test_exp, separate_sh=separate_sh)["render"] |
|
gt = view.original_image[0:3, :, :] |
|
|
|
if args.train_test_exp: |
|
rendering = rendering[..., rendering.shape[-1] // 2:] |
|
gt = gt[..., gt.shape[-1] // 2:] |
|
|
|
torchvision.utils.save_image(rendering, os.path.join(render_path, '{0:05d}'.format(idx) + ".png")) |
|
torchvision.utils.save_image(gt, os.path.join(gts_path, '{0:05d}'.format(idx) + ".png")) |
|
|
|
def render_sets(dataset : ModelParams, iteration : int, pipeline : PipelineParams, skip_train : bool, skip_test : bool, separate_sh: bool): |
|
with torch.no_grad(): |
|
gaussians = GaussianModel(dataset.sh_degree) |
|
scene = Scene(dataset, gaussians, load_iteration=iteration, shuffle=False) |
|
|
|
bg_color = [1,1,1] if dataset.white_background else [0, 0, 0] |
|
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda") |
|
|
|
if not skip_train: |
|
render_set(dataset.model_path, "train", scene.loaded_iter, scene.getTrainCameras(), gaussians, pipeline, background, dataset.train_test_exp, separate_sh) |
|
|
|
if not skip_test: |
|
render_set(dataset.model_path, "test", scene.loaded_iter, scene.getTestCameras(), gaussians, pipeline, background, dataset.train_test_exp, separate_sh) |
|
|
|
if __name__ == "__main__": |
|
|
|
parser = ArgumentParser(description="Testing script parameters") |
|
model = ModelParams(parser, sentinel=True) |
|
pipeline = PipelineParams(parser) |
|
parser.add_argument("--iteration", default=-1, type=int) |
|
parser.add_argument("--skip_train", action="store_true") |
|
parser.add_argument("--skip_test", action="store_true") |
|
parser.add_argument("--quiet", action="store_true") |
|
args = get_combined_args(parser) |
|
print("Rendering " + args.model_path) |
|
|
|
|
|
safe_state(args.quiet) |
|
|
|
render_sets(model.extract(args), args.iteration, pipeline.extract(args), args.skip_train, args.skip_test, SPARSE_ADAM_AVAILABLE) |